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A multi-time-scale generalization of recursive
identification algorithm for ARMAX systems?

Lirong Huang and Håkan Hjalmarsson

Abstract—Recently, [5] presented a new approach to re-
cursive identification for ARMAX systems, which is a three-
stage recursive scheme and assumes independent and identically
distributed input signals. Here, we observe that, unless the
time scale of the algorithm at one stage is reasonably faster
than those at the previous stages, convergence to true value
may not take place. To remedy this issue, this note proposes
a multi-time-scale modification of the algorithm in [5] such that
convergence is achieved. In addition, the new scheme handles a
wider class of input signals so that the input can be designed for
some purpose.The advantage of the multi-time scale algorithm is
verified with numerical examples.

Index Terms—ARMAX models, L-mixing processes, multi-
time-scale method, quasi-stationary signals, recursive estimation,
stochastic approximation.

I. INTRODUCTION

The ARMAX is a widely used stochastic model in
economics [1], engineering [12], medicine [23], and science
[20] literature and has been intensively studied over several
decades, see, e.g., [5], [6], [11], [15]-[19]. One of the chal-
lenging problems is to identify the MA-part. The estimation
of MA parameters has been a research problem in signal
processing and system identification for the past decades (see
[5], [11], [8], [9], [16], [21], [24]). The parameter estimation
of MA signals from second-order statistics was deemed for
a long time to be a difficult nonlinear problem for which no
computationally convenient and reliable solution was possible
[24]. For the convergence of estimates of MA-part, the strictly
positive realness (SPR) condition is normally imposed in the
existing results (see [6] ,[15]-[17], [19], [21]). But, as shown in
[11] (see also [6]), it is possible to weaken the SPR condition
by an over-parametrization technique or an increasing lag
method, which, however, may complicate the algorithm and
require additional information [5].

It is well known that stochastic recursive algorithms, also
known as stochastic approximation [2], [4], [9], [13], [14],
[22], have various applications and are a powerful tool for
on-line identification that is a key instrument in adaptive
control, adaptive filtering, adaptive prediction and adaptive
signal processing problems (see [6], [17]-[19]). Recently, [5]
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presented a new approach of stochastic approximation to
recursive identification for ARMAX systems, where the input
signal is assumed to be an i.i.d. (independent and identically
distributed) sequence and the i.i.d. property plays an important
role in the analysis. It is interesting to generalize the result to
a case where the input signal is not an i.i.d. sequence but is
designed for some purpose, which is also suggested in [5]. To
do so, we relax the condition on the concerned signals to a
class of quasi-stationary signals (see Lemmas 2.1-2.3), apply
L-mixing techniques (see Definition 2.2 and Lemma 2.4), and
propose a new scheme for X-part (see (11) below). More
importantly, it is noticed that the three-stage recursive scheme
in [5] is composed of three coupled recursive algorithms
that should be of different time scales, e.g., algorithm (26)-
(27) in [5] calculates estimate Xk in the environment where
ζ̃k is recursively updated. When the algorithm operates in a
(slowly) varying environment, the time scale of the algorithm
should remain reasonably faster than that of the changing
environment for otherwise it would never adapt (see [14],
[3], [13]). This note proposes a multi-time-scale variant of
the recursive algorithm in [5] such that it works with quasi-
stationary input signals and hence has wider applicability to
the problems of recursive identification for ARMAX systems.
Our proposed algorithm may be regarded as a multi-time-scale
generalization of that in [5] and is applicable to a wider range
of estimation problems, which is explained (Remarks 3.2-3.3)
and verified with numerical examples where the scheme in
[5] does not work (Section V). To highlight and focus on the
new techniques, we consider single-input single-output (SISO)
systems but our results can be extended to multi-input multi-
output (MIMO) systems of the form in [5].

II. PRELIMINARIES: SYSTEM AND INPUT SIGNAL

Our problem will be embedded in an underlying complete
probability space (Ω,F , {Fn}n≥0,P) with a natural filtration
Fn1
⊂ Fn2

for n2 > n1, where Ω is the sample space, F is the
σ-algebra that defines events E in Ω which are measurable. Let
E[·] be the expectation operator with respect to the probability
measure. Let (Fn,F+

n ), n ≥ 0, be a pair of families of σ-
algebras such that (i) Fn ⊂ F is monotone increasing, (ii)
F+
n ⊂ F is monotone decreasing, and (iii) Fn and F+

n are
independent for all n ≥ 0.

Let us consider the ARMAX-system

A∗(q)yn = B∗(q)un−1 + C∗(q)en (1)

where A∗(q), B∗(q) and C∗(q) are polynomials in the back-
ward shift operator q−1 of degrees pa, pb, and pc, respec-
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tively: A∗(q) = 1 +
∑pa
j=1 a

∗
jq
−j , q−1B∗(q) =

∑pb
j=1 b

∗
jq
−j

and C∗(q) = 1 +
∑pc
j=1 c

∗
jq
−j ; noise process {en} is

an i.i.d. sequence. Without loss of generality, let pc ≥ 1
(see [5]). Assume that the system is at rest prior to time
n = 0, i.e., yn = un = en = 0 for n < 0. Write
θ∗ =

[
θ∗A

T θ∗B
T σ∗e

2 θ∗C
T
]T ∈ Rpa+pb+pc+1 with θ∗A =(

a∗1 a∗2 · · · a∗pa
)T ∈ Rpa , θ∗B =

(
b∗1 b∗2 · · · b∗pb

)T ∈ Rpb ,
θ∗C =

(
c∗1 c∗2 · · · c∗pc

)T ∈ Rpc for the true parameter vector
and denote by θ an arbitrary vector of the same structure,
θ =

[
θTA θTB σ2

e θTC
]T

with θA = (a1 a2 · · · apa)
T ,

θB = (b1 b2 · · · bpb)
T and θC = (c1 c2 · · · cpc)

T .
Obviously, in the SISO case (i.e., m = l = 1 in [5]),

[a∗pa b∗sb
∗
1 +c∗sσ

∗
e

2] is of full-row-rank because (pa, pb, pc) are
the true orders of the system (1), where s = max{pb, pc},
b∗s = 0 if s > pb and c∗s = 0 if s > pc(cf. A2 in [5]).
Assumptions used in this work are listed as follows, which
are the counterpart of [5, Condition A0-A3].

A1. E[en] = 0, E[e2
n] = σ∗e

2 > 0 and E[|en|q] < ∞ for all
q ≥ 1, where σ∗e

2 is unknown.
A2. A∗(z) is stable (i.e., A∗(z) 6= 0 for |z| ≥ 1) and C∗(z) 6=

0 for all |z| ≥ 1.
A3. A∗(z) and B∗(z)ΨuB

∗(z−1) + C∗(z)σ∗e
2C∗(z−1) have

no common left factor for all Ψu ≥ 0.
A4. The input signal is generated by

un = fn,0 wn (2)

where {wn} is an i.i.d. sequence independent of {en}
such that E[wn] = 0, E[w2

n] = 1 and E[|wn|k] < ∞ for
all k ≥ 1 and fn,0 is Fn−1 measurable (and hence is
independent of wn) for all n ≥ 1 with respect to Fn =
σ{et, wt : 0 ≤ t ≤ n} and F+

n = σ{et, wt : t ≥ n+ 1}.
And fn,0 is designed to satisfy conditions (3)-(5) below.

Define rn,j = E[unun−j |Fn−1] and assume

0 < rmin ≤ rn,0 = f2
n,0 ≤ rmax < +∞ (3)

for all n ≥ 1. So rn,j = 0 if j > 0 for all n ≥ 1. Let sequence
{λn} be defined by λ0 = 0 and

λn =
1

n

n∑
k=1

rk,0 =
1

n

[
(n− 1)λn−1 + rn,0

]
, n ≥ 1. (4)

It is also assumed that, at step n ≥ 1, the input signal is
generated by (2) such that∣∣rn,0 − λn−1

∣∣ ≤ Lλ
nα

, (5)

where Lλ ≥ 0 is usually set large and α > 0 small in practice
so that, for a control purpose with respect to any experiment
length (see, e.g., [10, (34)-(36)]), this constraint is soft enough
and it never becomes active throughout the experiment.

Remark 2.1: By the tower property, (3) implies that the
auto-correlations r̂n,j = E[unun−j ] satisfies 0 < rmin ≤
r̂n,0 = E[rn,0] = E[f2

n,0] ≤ rmax < +∞ and r̂n,j = 0

if j > 0 for all n ≥ 1 while (5) implies that −Lλnα ≤
r̂n,0 − λ̂n−1 ≤ Lλ

nα for all n ≥ 1, where λ̂0 = 0 and

λ̂n =
1

n

n∑
k=1

r̂k,0 =
1

n

[
(n− 1)λ̂n−1 + r̂n,0

]
. (6)

It is observed that {un} is an i.i.d. sequence if Lλ = 0 [5].
Let us introduce the definition and present the following

results on quasi-stationarity (see [18, Definition 2.1, p34]) of
our concerned signals.

Definition 2.1: A signal {sn} is said to be quasi-
stationary if it is subject to: (i) E[sn] = ms

n, |ms
n| ≤

C, ∀n, (ii) E[snsk] = Rsn,k, |Rsn,k| ≤ C and
E[sksk−τ ] = limn→∞(1/n)

∑n
k=1R

s
k,k−τ = Rsτ , ∀ τ ,

where E[·] is defined by [18, (2.60), p34], i.e., E[f(k)] =
limn→∞(1/n)

∑n
k=1 E[f(k)].

Lemma 2.1: The process {un} generated by (2) is a
quasi-stationary signal if conditions (3)-(5) hold.
Proof. It is obvious that

∣∣E[un]
∣∣ ≤ √

E[u2
n] =

√
rmax

and
∣∣E[unuk]

∣∣ ≤ 1
2 (E[u2

n] + E[u2
k]) ≤ rmax for all

n, k. According to Definition 2.1, now we only need to
show that, for any τ , there exists r̄τ such that r̄τ =
limN→∞

1
N

∑N
n=1 E[unun−τ ] = limN→∞

1
N

∑N
n=1 r̂n,n−τ .

Clearly, this holds for τ > 0 since r̂n,τ = E[unun−τ ] =
0 for all n. If τ̄ = −τ > 0, then r̂n,τ =
E[unun−τ ] = E[un−τun] = r̂n+τ̄ ,τ̄ for all n ≥ 1. It
is easy to see that r̄τ = limN→∞(1/N)

∑N
n=1 r̂n,n−τ =

limN→∞(1/N)
∑N
n=1 r̂n+τ̄ ,τ̄ = r̄τ̄ = 0. Notice that{∑n

k=1

∣∣λ̂k − λ̂k−1

∣∣} is a Cauchy sequence since
∣∣λ̂k −

λ̂k−1

∣∣ = 1
k

∣∣r̂k,0 − λ̂k−1

∣∣ ≤ Lλ
k1+α for all k ≥ 1. This

implies that {λ̂n} with λ̂n =
∑n
k=1 λ̂k− λ̂k−1 is a convergent

sequence and hence, by (6),

r̄0 = lim
n→∞

λ̂n. (7)

So the process {un} is a quasi-stationary signal. 2

Lemma 2.2: The quasi-stationary signals {un} and {en}
are uncorrelated.
Proof. The jointly quasi-stationary signals {un} and {en} are
uncorrelated if their cross-covariance function E[unen−τ ] = 0
for all τ . Note that {un} is generated by (2), where fn,0 is
independent of wn and {wn} is independent of {en}. So

E[unen−τ ] = E[fn,0wnen−τ ] = E[fn,0en−τ ]E[wn] = 0 (8)

for any τ , which completes the proof. 2

Lemma 2.3: {yn} is also a quasi-stationary signal.
Proof. Recall that A∗(q) is stable and quasi-stationary signals
{un} and {en} are uncorrelated. By [18, Theorem 2.2],
both {yu,n} and {yu,n} are quasi-stationary signals, where
yn = yu,n + ye,n, yu,n = B∗(q)

A∗(q)un = G∗(q)un with

G∗(q) =
∑∞
k=0 gkq

−k, ye,n = C∗(q)
A∗(q)en = L∗(q)en with

L∗(q) =
∑∞
j=0 ljq

−j . So there is a constant Cy ≥ 2(Cu+Ce)

such that
∣∣E[yn]

∣∣ =
∣∣E[yu,n+ye,n]

∣∣ ≤ ∣∣E[yu,n]
∣∣+ ∣∣E[ye,n]

∣∣ ≤
Cy and

∣∣E[ynyk]
∣∣ =

∣∣E[(yu,n + ye,n)(yu,k + ye,k)]
∣∣ ≤∣∣E[yu,nyu,k]

∣∣ +
∣∣E[ye,nye,k]

∣∣ + 1
2E[y2

u,n + y2
u,k + y2

e,n +

y2
e,k] ≤ Cy , where max{

∣∣E[yu,n]
∣∣, ∣∣E[yu,nyu,k]

∣∣} ≤ Cu and
max{

∣∣E[ye,n]
∣∣, ∣∣E[ye,nye,k]

∣∣} ≤ Ce for all n, k. Given any τ ,
E[ynyn−τ ] = E[yu,nyu,n−τ ]+E[ye,nye,n−τ ]+E[yu,nye,n−τ ]+
E[ye,nyu,n−τ ] exists if the last two terms E[yu,nye,n−τ ] and
E[ye,nyu,n−τ ] exist. Let nτ = max{n, n − τ}. Recall that
yn = un = en for n < 0. Then, by (8), we obtain
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∣∣E[yu,nye,n−τ ]
∣∣ =

∣∣∣E[∑n
k=0 gkun−k

∑nτ
j=0 ljen−τ−j

]∣∣∣ =∣∣∣∑n
k=0

∑nτ
j=0 gkljE[fn−k,0en−τ−j ]E[wn−k]

∣∣∣ = 0 and hence

E[yu,nye,n−τ ] = 0 since both G∗(q) and L∗(q) are stable.
Similarly, we have E[ye,nyu,n−τ ] = 0. Note that E[ynyn−τ ] =
E[yu,nyu,n−τ ] + E[ye,nye,n−τ ] and {yu,n}, {ye,n} are quasi-
stationary. It follows the desired result. 2

We also cite the following definition and result on L-
mixing processes (see [7] and [9]) that are useful for the
development of our work.

Definition 2.2: A stochastic process {sn} is L-mixing
with respect to the σ-algebras (Fn,F+

n ) if the follow-
ing conditions are satisfied: (i) sn is Fn measurable, (ii)
supn≥0 E1/k

[
|sn|k

]
< ∞ for all 1 ≤ k < ∞, (iii)∑∞

τ=0 γk(τ) < ∞ for all 1 ≤ k < ∞, where, for τ ≥ 0,
γk(τ) = supn≥τ E1/k

[
|sn − E[sn|F+

n ]|k
]
.

Lemma 2.4: Process {zn} with zn = sntn is L-mixing if
both {sn} and {tn} are L-mixing.

III. MULTI-TIME-SCALE RECURSIVE ALGORITHM

The proposed recursive estimation algorithm is a modifi-
cation of the one in [5]. As in [5], let θA,n, θB,n and Xn be
the estimates for θ∗A, θ∗B and X∗ = [σ∗e

2 θ∗C
T ]T respectively.

Let {Mn} be a sequence of positive real numbers increasingly
diverging to infinity. So there is a finite number n∗ such that
|θ∗| < Mn∗ , where | · | is the Euclidean norm of a vector or
its induced norm of a matrix. Moreover, denote by S+ the
class of sequences {α(n)} satisfying α(n) > 0, α(n)→ 0 as
n→∞, and

∑∞
n=1 α(n) =∞.

A. Recursive algorithm for AR-part

Let ϕTn =
[
yn yn−1 · · · yn−pa+1

]
∈ Rpa , Wn =

E[ynϕ
T
n−1−s] =

[
Rn,s+1 · · · Rn,s+pa

]
∈ Rpa and

Γn = E[ϕnϕ
T
n−s] =


Rn,s · · · Rn,s+pa−1

Rn,s−1 · · · Rn,s+pa−2

...
. . .

...
Rn,s−pa+1 · · · Rn,s

 ∈ Rpa×pa

for all n ≥ 1. Similar to the analysis in [5], we have
E[B∗(q)un−1ϕ

T
n−1−s] = 0, E[C∗(q)enϕ

T
n−1−s] = 0 and

hence WT
n = −ΓTnθ

∗
A. It is noticed that, unlike the case

in [5], {yn} is not stationary. But, since {yn} is a quasi-
stationary signal (see [18]), there exist Rτ , W and Γ such that
Rτ = R−τ = E[Rn,τ ] for τ ≥ 0, W = E[Wn], Γ = E[Γn].
This yields the Yule-Walker equation: WT = −ΓT θ∗A or
ΓT θ∗A + WT = 0. The recursive algorithm for θA,n (n ≥ 1)
is given as follows:

Γ̃n = Γ̃n−1 −
1

n

(
Γ̃n−1 − ϕnϕTn−s

)
W̃n = W̃n−1 −

1

n

(
W̃n−1 − ynϕTn−s−1

)
θA,n− = θA,n−1 − αa(n) ·

(
Γ̃TnθA,n−1 + W̃T

n

)
θA,n = θA,n−IEA,n + θA,0IECA,n (9)

EA,n =
{
|θA,n−| ≤MλA,n−1

}
, ECA,n = Ω\EA,n

λA,n = λA,n−1 + IECA,n , λA,0 = 0

with arbitrary initial values Γ0 ∈ Rpa×pa , W0 ∈ Rpa and
θA,0 ∈ Rpa , where {αa(n)} ∈ S+ and IE is the indicator of
set E. It is observed that Γ̃n and W̃n given above are the re-
cursive expressions of the time averages (1/n)

∑n
j=1 ϕjϕ

T
j−s

and (1/n)
∑n
j=1 yjϕ

T
j−s−1, respectively.

B. Recursive algorithm for X-part

Since the algorithm (16) in [5] cannot be applied to
a case where the input is not an i.i.d. signal, we need to
propose a new scheme for the quasi-stationary input sig-
nals. Let us explain the idea of the algorithm for the X-
part as follows. Define χn = yn + ϕTn−1θ

∗
A with ηn−1 =[

un−1 un−2 · · · un−pb
]T

. Clearly, χn = A∗(q)yn =
B∗(q)un−1 +C∗(q)en. Since the input sequence {un} is gen-
erated by (2) where {wn} is an i.i.d. sequence of random vari-
ables independent of {en}, we have E[ηn−1χn] = r̂n,0Ipbθ

∗
B ,

where Ipb is the identity matrix of order pb. By Lemma 2.2,
this yields the Yule-Walker equation for the X-part

r̄0Ipbθ
∗
B − Ξ = 0, (10)

where r̄0 is given by (7) and Ξ = E[ηn−1χn]. Therefore,
estimating χn with θA,n by χ̃n = yn + ϕTn−1θA,n = yn +∑pa
j=1 aj,nyn−j , we obtain the recursive estimation for θ∗B :

λ̃n = λ̃n−1 −
1

n

(
λ̃n−1 − u2

n

)
, λ̃0 = 0

Ξ̃n = Ξ̃n−1 −
1

n

(
Ξ̃n−1 − ηn−1χ̃n

)
, Ξ0 = 0

θB,n− = θB,n−1 − αb(n) ·
(
λ̃nIpbθB,n−1 − Ξ̃n

)
θB,n = θB,n−IEB,n + θB,0IECB,n (11)

EB,n =
{
|θB,n−| ≤MλB,n−1

}
, ECB,n = Ω\EB,n

λB,n = λB,n−1 + IECB,n , λB,0 = 0

with arbitrary initial value θB,0 ∈ Rpb , where {αb(n)} ∈ S+

such that limn→∞
αa(n)
αb(n) = 0.

C. Recursive algorithm for MA-part

In the sequel, we employ a variant of the recursive
algorithm proposed in [5] for the MA-part. Define

ζn = A∗(q)yn −B∗(q)un−1 = C∗(q)en, (12)

which is a stationary ergodic process with correlation function
(see [5]) S =

[
S(0) S(1) · · · S(pc)

]T ∈ Rpc+1, where
S(j) = E[ζnζn−j ] for j = 0, 1, · · · , pc. The parameter to
be estimated is X∗ = [σ∗e

2 θ∗C
T ]T = (σ∗e

2 c∗1 · · · c∗pc)
T ,

which satisfies the algebraic equation Φ(X)X = U(X)S,
where X = [X(0) X(1) · · · X(pc)]

T ∈ Rpc+1, Φ(X) ∈
R(pc+1)×(pc+1) and U(X) ∈ R(pc+1)×(pc+1) given as
Φ(X) = Diag{1, X(0), · · · , X(0)} and

U(X) =


U0(X) U1(X) · · · Upc(X)

0 U0(X) · · · Upc−1(X)
...

. . . . . .
...

0 · · · 0 U0(X)


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with entries U0(X) = 1, U1(X) = −X(1), and
Uj(X) = −X(1)Uj−1(X) − X(2)Uj−2(X) − · · · − X(j)
for j = 2, · · · , pc. Therefore, X∗ should satisfy the
equation Φ(X)X = U(X)S (see [5]), where it is not
necessary to symmetrize the first element of U(X)S =[∑pc

j=0 Uj(X)S(j)
∑pc
j=1 Uj−1(X)S(j) · · · S(pc)

]T
.

Let

{
ζ̃n = yn + ϕTn−1θA,n − ηTn−1θB,n

Sn =
[
Sn(0) Sn(1) · · · Sn(pc)

]T (13)

with Sn(j) = Sn−1(j)− 1
n

(
Sn−1(j)− ζ̃nζ̃n−j

)
and S0(j) = 0

for j = 0, 1, · · · , pc. The recursive algorithm for the estimate
Xn (n ≥ 1) is given as follows:

Xn− = Xn−1 − αx(n) ·
(
Φ(Xn−1)Xn−1 − U(Xn−1)Sn−1

)
Xn = Xn−IEX,n +X0IECX,n (14)

EX,n =
{
|Xn−| ≤MλX,n−1

}
, ECX,n = Ω\EX,n

λX,n = λX,n−1 + IECX,n , λX,0 = 0

where X0 = [ν 0 · · · 0]T ∈ Rpc+1 with ν ≥ 1 and
{αx(n)} ∈ S+ with limn→∞

αb(n)
αx(n) = 0.

Remark 3.1: A frequently used choice for {αa(n)},
{αb(n)} and {αx(n)} is αa(n) = n−βa , αb(n) = n−βb and
αx(n) = n−βx for all n ≥ 1, where 0 < βx < βb < βa ≤ 1.

Remark 3.2: The recursive scheme [5, (25)-(27)] is a
special case of (14) when limn→∞

αb(n)
αx(n) = 0 is not imposed.

Our variant is more general. To see this, let us consider the
difference between ζ̃n and ζn denoted by d̃(ζ̃n, ζn), which is
large at the beginning and tends to small as n increases to
large. Clearly, d̃(ζ̃n, ζn) is reflected in d̃(Xn, X

∗). However,
the step size δx/n, which, in some sense, is the gain of
the influence of d̃(ζ̃n, ζn) on d̃(Xn, X

∗), diminishes when
d̃(ζ̃n, ζn) tends to small as n increases to large. This implies
that Xn could fail to converge to X∗ even when ζ̃n → ζn a.s.
as n→∞. A reasonably larger gain δx/nβx with βx < 1 used
for those data with small d̃(ζ̃n, ζn) could lead to an effective
algorithm, see the numerical examples below.

Remark 3.3: Our recursive algorithm is a multi-time-
scale variant of that in [5], where the components of the
iterate are divided into three group and each of them has
its own step-size sequence. The multi-time-scale method is
usually used (in algorithms) to cope with dynamical systems
composed of both fast and slow variables (see, e.g., [14], [13],
[3]). In fact, when the algorithm is expected to operate in
a slowly varying environment, it is important that the time
scale of the algorithm remains reasonably faster than that of
the changing environment. Otherwise, it would never adapt.
For instance, [5, (26)-(27)] is an algorithm for searching the
solutions of [5, Eq.(23)]. However, since ζn is unknown, this
algorithm employs its estimate ζ̃n and operates in a varying
environment where ζ̃n is recursively updated at the previous
stages. Therefore, the time scale of algorithm [5, (26)-(27)]
should remain reasonably faster than those of the previous
stages, which lead to the changing environment ζ̃n. Otherwise,
convergence to true value could not take place, see Figs. 1-
2 in Section V below. It should be also pointed out that

good behavior of the coupled schemes depends on reasonable
separation of the time scales.

IV. CONVERGENCE OF ESTIMATORS

In this section, we consider convergence of the recursive
estimators presented above.

Theorem 4.1: Suppose that the assumptions in Section II
hold. Then {θA,n} given by (9) converges to θ∗A a.s., {θB,n}
given by (11) converges to θ∗B a.s., and {Xn} given by (14)
converges to X∗ = [σ∗e

2 θ∗C
T ]T a.s..

Since the recursive scheme presented in Section III is
modified from the one presented in [5], we just outline our
proof for the convergence based on the proofs in [5] as follows.
Major differences between our scheme and the one in [5]
are: (i) multi time scales in class S+, instead of single scale
1/n [5] , in the coupled recursive algorithms, and (ii) quasi-
stationarity, instead of stationarity [5], of the input signals.
Since condition S1 in [5, Appendix] is satisfied for class S+,
GCT and the related techniques are still applicable to our
multi-time-scale scheme. Therefore, the main task of our proof
is to show that we still have the convergence in the case where
the stationary signals are replaced by the quasi-stationary ones.
Proof. According to the input signal designed in Section
II, process {un} is a quasi-stationary signal with spectrum
Ψu(ω) =

∑∞
τ̄=−∞ r̄τ̄e

−iτ̄ω = r̄0 ≥ rmin > 0, ∀ω,
where r̄τ = r̄−τ = limN→∞(1/N)

∑N
n=1 r̂n,τ for τ ≥ 0

(see, e.g., [18, 2G.2, p47]). By Lemmas 2.2 and 2.3, the
spectral function of quasi-stationary process {yn} is Ψy(ω) =∑∞
τ=−∞ r̄y(τ)e−iτω =

∣∣∣B∗(eiω)
A∗(eiω)

∣∣∣2Ψu(ω) + σ∗e
2
∣∣∣C∗(eiω)
A∗(eiω)

∣∣∣2 >
0, ∀ω, where r̄y(τ) = limN→∞(1/N)

∑N
n=1 E[ynyn−τ ] for

all τ . By the well-known spectral factorization (see, e.g., [18,
p41]), there exists a stationary signal ȳn such that

Ψȳ(ω) = Ψy(ω), ∀ω ⇒ r̄y(τ) = rȳ(τ) = E[ȳnȳn−τ ], ∀ τ.
(15)

Let {χ̄n} be χ̄n = A∗(q)yn, then {χ̄n} is a stationary
signal with spectrum Ψχ̄(ω) = |A∗(eiω)|2Ψȳ(ω) > 0, ∀ω.
According to the analysis in the proof of [5, Lemma 1]
and (15), the rank of Γ is pa. But, by [18, Theorem 2.3],
(1/N)

∑N
n=1 ynyn−τ → Rτ a.s. as N → ∞, which implies

P(Ω0) = 1, where Ω0 =
{

Γ̃n → Γ, W̃n →W as n→∞
}

.
Following the way of Lemma 2 and Theorem 1 in [5], we

can apply the GCT with Lyapunov function v(θA) = |ΓθA −
W |2 and show that {θA,n} given by (9) converges to θ∗A a.s.

Let us proceed to consider the convergence of the esti-
mates for X-part on Ω0. Recall that we have the Yule-Walker
equation (10) for the X-part. Therefore, we can recursively
estimate θ∗B with

θB,n− = θB,n−1 − αb(n) · (λnIpbθB,n−1 − Ξn) (16)

where Ξn = (1/n)
∑n
k=1 ηn−1χn. By Theorem 2.3 in

[18], it follows that (1/n)
∑n
j=1 u

2
j → r̄0 a.s. on Ω0

as n → ∞. It is observed that {ηn−1} and {χn} are
jointly quasi-stationary since both {ηn−1} and {χn} are
quasi-stationary and E[ηn−1−kχn] = E[ηn−1−kB

∗(q)un−1]+
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Fig. 1. Solid lines: estimates of θA and θB by the scheme in [5]. Dotted
lines: true values.
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Fig. 2. Solid lines: estimate of X by the scheme in [5]. Dotted lines: true
values.
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Fig. 3. Solid lines: estimates of θA and θB by the proposed scheme with
i.i.d. input. Dotted lines: true values.
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Fig. 4. Solid lines: estimate of X by the proposed scheme with i.i.d. input.
Dotted lines: true values.
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Fig. 5. Solid lines: estimate of θB by the proposed scheme with quasi-
stationary input. Dotted lines: true values.
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Fig. 6. Solid lines: estimate of X by the proposed scheme with quasi-
stationary input. Dotted lines: true values.

E[ηn−1−kC
∗(q)en] = E[ηn−1−kB

∗(q)un−1] exists for all k
because, by Lemma 2.2, quasi-stationary signals {ηn−1} and
{en} are uncorrelated. Moreover, it is not difficult to verify that
both {ηn−1} and {χn} are L-mixing processes with respect to
(Fn,F+

n ) (see Definition 2.2). But, by Lemma 2.4, {ηn−1χn}
is also L-mixing. This implies {ξn} is an L-mixing process
with E[ξn] = 0, where ξn = ηn−1χn−E[ηn−1χn]. According
to the strong law of large numbers [7, Corollary 3.1], it follows
1
n

∑n
j=1 ξj → 0 and hence 1

n

∑n
j=1 ηj−1χj → Ξ a.s. on Ω0

as n → ∞. Note that (3) implies r̄0 = E[rn,0] ≥ rmin > 0.
Similar to the proof of [5, Theorem 1], we can apply the GCT
with Lyapunov function v(θB) = |r̄0IpbθB −Ξ|2 to show that
{θB,n} given by (16) converges to θ∗B a.s.. Note that {yn} and
hence {ϕn} are quasi-stationary signals, which, as (39) in [5],
yields 1

n

∑n
j=1 |χ̃j − χj |2 = 1

n

∑n
j=1 |ϕTj−1(θA,j − θ∗A)|2 ≤

1
n

∑n
j=1 |ϕj−1|2 |θA,j − θ∗A|2 → 0 a.s. as n → ∞ since

θA,n → θ∗A a.s. as n → ∞. But, by Cauchy-Schwarz
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inequality, this gives
∣∣∣ 1
n

∑n
j=1 ηj−1χ̃j − 1

n

∑n
j=1 ηj−1χj

∣∣∣ ≤
1
n

∑n
j=1

∣∣ηj−1(χ̃j − χj)
∣∣ ≤ 1

n

∑n
j=1 |ηj−1| |χ̃j − χj | ≤√

1
n

∑n
j=1 |ηj−1|2

√
1
n

∑n
j=1 |χ̃j − χj |2 → 0 a.s. as n→∞

since {un} and hence {ηn} are quasi-stationary signals. This
implies 1

n

∑n
j=1 ηj−1χ̃j → Ξ a.s. as n→∞. It immediately

follows that {θB,n} given by (11) converges to θ∗B a.s..
Since θA,n → θ∗A and θB,n → θ∗B a.s. as n→∞, by (12)

and (13), we have P(Ω1) = 1 (see [5, Corollary 1]), where
Ω1 = {Sn → S as n → ∞}. Then we always consider the
sample paths on Ω1.

Now, it can be shown in the way presented in [5, Section
IV] that {Xn} given by (14) converges to X∗ a.s., where,
particularly, it can be shown as [5, Proposition] that, as n→
∞, Y (z) is stable a.s., i.e., Y (z) 6= 0 for all |z| ≥ 1, with
Y (z) defined by Y (z) = 1 +

∑pc
j=1X(j)z−j and X ∈ G =

{X ∈ Rpc+1 : Φ(X)X = U(X)S }. 2

V. NUMERICAL EXAMPLES AND SIMULATIONS

Example 5.1: Let us consider ARMAX system (1) with
i.i.d. input, where pa = pb = pc = 1, θ∗A = 0.6, θ∗B =
−3, θ∗C = −0.9, σ∗e

2 = 0.1 and X∗ = (0.1 − 0.9)T . All
simulations in this note employ initial values θA = 0, θB = 0,
θC = 0, σ2

e = 1 and {Mn}n≥0 with Mn = 1 + n (cf. [5]).
The typical realizations of the scheme in [5] show that

the estimators for AR-part and X-part converge, see Fig. 1,
while that for MA-part does not work, see Fig. 2. The reason
for this phenomenon is that the time scale of (25)-(27) is not
reasonably faster than that of (16) at the previous stage in
[5] and therefore convergence to true value is not guaranteed
for [5, (25)-(27)]. Figs. 3-4 are a typical realization of the
algorithm presented in Section III with βa = 1, βb = 1/4 and
βx = 1/7, which verifies the effectiveness of our result.

Example 5.2: The true parameters of system (1) with
orders pa = 0, pb = 4, pc = 2 are θ∗B = (0.9 0.6 0.2 0.3)T ,
θ∗C = (−1.5 0.6)T , σ∗e

2 = 0.1, X∗ = (0.1 −1.5 0.6)T , which
is derived from the FIR example in [10]. Note that C∗(z) does
not satisfy the SPR condition while C∗(z) 6= 0 for all |z| ≥ 1.

It can be verified with typical realizations that, again,
the algorithm in [5] does not work for the MA-part. Let
us consider the modified and generalized algorithm presented
above. To use less energy during the process, we employ quasi-
stationary input generated by (2) with r1,0 = f2

1,0 = 1 and
rn,0 = f2

n,0 = max{rmin, λn−1 − 1/(4n)} for all n ≥ 1. Let
rmin = α = 10−6 and rmax = Lλ = 1010. The input {un}
satisfies conditions (3)-(5) and therefore Theorem 4.1 applies,
which is verified with the typical realizations of the scheme
in Section III with βb = 1 and βx = 1/4, see Figs. 5-6.

VI. CONCLUSION

This note proposes a multi-time-scale modification of the
recursive algorithm presented in [5]. The conditions on the
input signal are relaxed viz-a-viz [5] and convergence to the
true parameter values has been established. The advantage of
using multiple-time scales has been verified with numerical

examples. Our result can be extended to MIMO systems. It
would be interesting to study how to find a reasonable (model-
complexity-dependent) separation of the time scales for good
behavior of the three-stage recursive scheme (9), (11) and (14).
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