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1. Introduction

In the past few decades, much attention has been gained for the study of nonlinear science, especially chaos. Chaos is a
particular case of nonlinear dynamics that has some specific characteristics such as extraordinary sensitivity to initial con-
ditions and system parameter variations, broad Fourier transform spectra and fractal properties of the motion in the phase
space. Due to these especial properties, chaos has been used in many practical engineering areas such as chemical reactions,
power converters, secure communications, information processing, biological systems and mechanical systems [1-3] and
many various control techniques have been proposed for controlling and synchronizing of chaotic systems, including sliding
mode control [4-6], optimal control [7-9], adaptive control [10,11], nonlinear feedback control [12], backstepping method
[13,14], passive control [15], Hoo approach [16], fuzzy logic control [17], PID control [18], etc.

In addition to the control and stabilization of chaos, synchronization of chaotic systems is a fascinating concept which has
been received considerable interest among nonlinear scientists in recent times. For chaos synchronization there are two cha-
otic systems called the master (drive) system and slave (response) system. The objective of the designed controller for syn-
chronization is to make the output of the master system follows the output of the slave system asymptotically.

Unfortunately, most of the above mentioned works on chaos synchronization have focused on chaotic systems without
model uncertainties and external disturbances in both master and slave systems. However, in practical applications, due to
the modeling errors, structural variations of the systems and un-modeled dynamics uncertainties are present in the chaotic
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system dynamics. Moreover, in practical situations, chaotic systems are unavoidably affected by external disturbances such
as environment and measurement noises. So, synchronization of chaotic systems with uncertainties and external distur-
bances is effectively significant in applications. In this regard, some researchers have proposed a number of techniques
for synchronization of uncertain chaotic systems that includes nonlinear feedback control [19], sliding mode control [20-
24], backstepping procedure [25], linear state feedback control [26,27], active control [28] and some other methods.

However, all of the mentioned above works have a common serious drawback: they have concentrated on the synchro-
nization of two identical chaotic systems. But, the method of the synchronization of two different chaotic systems is far from
being straightforward. Also, in many real world applications, there are no exactly two identical chaotic systems. Therefore,
the problem of chaos synchronization between two different uncertain chaotic systems is an important research issue. And a
few researchers have developed some techniques for it that includes sliding mode control [29-31] and neural fuzzy control
[32].

Nevertheless, the previous methods have studied chaotic systems with fully (or partially) known parameters. While, in
practice, it is hard to exactly determine the values of the system parameters in priori. Therefore, synchronization of chaotic
systems with unknown parameters is essential and useful in real-life applications. Consequently, some approaches, such as
sliding mode control [33,34], finite-time based control [35], adaptive control [36-39], optimal control [40,41], fuzzy control
[42-44], have been developed for synchronization of two identical chaotic systems with unknown parameters and some
methods, such as adaptive control [45-49], sliding mode control [50] and backstepping method [51], have been proposed
for synchronization of two different chaotic systems with unknown parameters.

In conclusion, to the best knowledge of the authors, the challenging problem of chaos synchronization between two dif-
ferent chaotic systems in spite of uncertainties, external disturbances and unknown parameters in both master and slave
chaotic systems is not studied to this date. Therefore, the main purpose of this paper is to design a robust adaptive sliding
mode controller (RASMC) to synchronize two different chaotic systems in the presence of uncertainties, external distur-
bances and fully unknown parameters in both master and slave chaotic systems. It is assumed that the bounds of the uncer-
tainties and external disturbances are unknown in advance. A simple suitable sliding surface, which includes
synchronization errors, is constructed. Appropriate update laws are derived to tackle the uncertainties, external disturbances
and unknown parameters. Then, on the basis of the update laws, the RASMC is designed to guarantee the existence of the
sliding motion. The stability and robustness of the proposed RASMC is proved using Lyapunov stability theory. Finally, three
well-known chaotic systems (Lorenz, Chen, and Liu systems) are used to verify the applicability and efficiency of the intro-
duced RASMC.

The organization of this paper is as follows. In Section 2, system description and problem formulation are presented. In
Section 3, the design procedure of the proposed RASMC is given. Simulation results are included in Section 4. Finally, Sec-
tion 5 ends this paper with some concluding remarks.

2. System description and problem formulation

In this paper, the n-dimensional master and slave chaotic systems with uncertainties, external disturbances and unknown
parameters are given as follows:
Master system:

() =fi(x1, %2, .., %n) + F1(X1,X2, ..., Xn)0 + Afi (X1, X2, . .., X, £) + d7' ()

X(t) = fa(X1,X2,..

Xn(t) :fn(XhXLH-

Slave system:

yl(t) :g](y17y27"-
yz(t) :gz(yl7YZ7"'

yﬂ(t) :gn(yl’wau

.,Xn) +F2(X17X27...

Xn) + Fr(X1,%;, ..

7yn) +Gl(y17y27"
7yn) +Gz(y17y27"

7yn) +Gn(y1,y2,...

7Xn)0+ Afz(X],Xz,...

o Xn)0 4 Afa(X1,X2, . ..

-vyn)¢+Agl(y17y27"
'vyn)'l/'l'AgZ(y]vyZ?"

’yn)l/I+Agn(y]7y27"

,Xn, ) 4 d3 (¢)

7Xﬂ7t) +dnm(t)

Yo £) + 3 (0) + i (0)
Yo £) + dy(0) + u2(0)

Y )+ d () + un(t)

(2)

where X(t) = [X1,X2,. .., X,]" is the state vector of the master system, fi(x),i=1,2,...,n is a continuous nonlinear function, F{(x),
i=1,2,...,nis ith row of an n x m matrix (F(x)) whose elements are continuous nonlinear functions, 0 is an m x 1 unknown
vector parameter of the master system, Af(x,t) = [Afi(%,t), Afx(%,t),..., Afa(x,t)]" and d™ (t) = [d}'(t), d5 (¢), . .. ,d;”(t)]T are the
vectors of unknown uncertainties and external disturbances of the master system, respectively, y(t) = [y1,¥2,...,Va]" is the
state vector of the slave system, gi(y), i=1,2,...,n is a continuous nonlinear function, G{y), i=1,2,...,n is ith row of an
n x m matrix G(y) whose elements are continuous nonlinear functions, ¥ is an m x 1 unknown vector parameter of the
slave system, Ag(y,t)=[Agi(y,t),AZY,t)....,Aga(y.1)]" and d'(t) = [d}(t), (1), ... ,d,ﬁ(t)]T are the vectors of unknown
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uncertainties and external disturbances of the slave system, respectively, and u(t) = [u1(t),ux(t),...,ua(t)]" is the vector of
control inputs.

Assumption 1. Since the trajectories of chaotic systems are always bounded, then the unknown uncertainties Af(x,t) and
Ag(y,t) are assumed to be bounded. Therefore, there exist appropriate positive constants «" and o, i = 1,2,...,n such that

Afix.D <o and |Ag(y.0)|<of, i=12...n 3)
As a result, one can conclude that

|Aﬁ(x7t)_Agi(yst)|<(xia i:]727-~-7n (4)

Assumption 2. In general, it is assumed that the external disturbances are norm-bounded in C', i.e.

[d"6)| < g and |di(0)] < f, i=1,2,....n. 5)

Consequently, one can obtain that

d™6) — &) < p, i=1,2,....n. (6)

Assumption 3. The constants «; and 8, i=1,2,...,n are unknown.

To solve the synchronization problem, the error between the master system (1) and slave systems (2) can be defined as
e(t) = x(t) — y(t). Then with subtracting Eq. (2) from Eq. (1) the error dynamics is obtained as follows:

ei(t) = fi(®) + F1(X)0 + Afi (x,8) + d7 (1) — &1 (¥) = Gi()¥ — Agy (v, £) — dy (£) — i (1)
&x(t) = (%) + F2(X)0 + AR (%, 1) + dy (1) — 8,(¥) — G20 — AZ (. £) — d3 (1) — (1)

én(t) = fu(X) + Fu(X)0 + Afu(%,£) +d}/ (£) — &,(¥) — Gu (Y)W — A, (V. £) — iy (£) — un (D) (7)

It is clear that the synchronization problem can be transformed to the equivalent problem of stabilizing the error system (7).
The objective of this paper is that for any given master chaotic system (1) and slave chaotic system (2) with the uncertainties,
external disturbances and unknown parameters a suitable feedback control law u(t) is designed such that the asymptotical
stability of the resulting error system (7) can be achieved in the sense that lim,_ | e(t)|| = 0 or equivalently x(t) — y(t) as
t — oo.

3. Design of robust adaptive sliding mode controller

Sliding mode control [52] is a robust control method which has many interesting features such as low sensitivity to exter-
nal disturbances and robustness to the plant uncertainties due to structural variations and un-modeled dynamics. The slid-
ing mode controller is composed of an equivalent control part that describes the behavior of the system when the
trajectories stay over the sliding surface and a variable structure control part that enforces the trajectories to reach the slid-
ing surface and remain on it evermore. Adaptive control is a suitable approach to overcome system uncertainties, especially
uncertainties derived from uncertain parameters. Adaptive sliding mode control has the advantages of combining the
robustness of the sliding mode control with the tracking facilities of the adaptive control.

As a result, the RASMC technique includes two major steps to achieve synchronization of two different chaotic systems
with uncertainties, external disturbances and unknown parameters. The first step is to select an appropriate sliding surface
with the desired behavior. Therefore, the sliding surface suitable for the application can be designed as:

si(t) = ei(t), i=1,2,....n (8)

where s;(t) € R (s(t) = [s1(t),s2(t),. . .,sx(t)]) and the sliding surface parameters /; are positive constants.

Having established the suitable sliding surface, the next step is to determine an input signal u(t) to guarantee that the
error system trajectories reach to the sliding surface s(t) = 0 (i.e. to satisfy the reaching condition s(t)s(t) < 0) and stay on
it, forever. Therefore, to ensure the existence of the sliding motion a discontinuous control law is proposed as:

ui(t) = fi(x) — g;(¥) + Fi(%)0 — G;(¥)¥ + (& + p)sgn(si) + kisgn(s;),i=1,2,...,n 9)

where 0, , & and f; are estimations for 0, ¥, o; and f;, respectively. k;>0,i=1,2,...,n is the switching gain and a constant.
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To tackle the uncertainties, external disturbances and unknown parameters, appropriate update laws are defined as:

0= [Fx)™y, 0(0) =do
'//:—[G(J’] . ¥(0) =40
& = Ailsil, 64(0) = &o
Bi = Zilsil,  Bi(0) = Bio (10)
where = [4151,4252,. .., nSn]", and @, ¥o, & and B are the initial values of the update parameters 0, y, & and f;,
respectively.
Based on the control inputin (9) and update laws in (10), to guarantee the reaching condition s(t)s(t) < 0 and to ensure the

occurrence of the sliding motion a theorem is proposed and proved. Before proceeding to the theorem, the Barbalat lemma is
presented.

Lemma 1 (Barbalat lemma [53]). If w: R — R is a uniformly continuous function for t > 0 and if the limit of the integral
t

}im o(2)di (11)
—00 0
exists and is finite, then

lima(t) =0 (12)

Theorem 1. Consider the error dynamics (7), this system is controlled by u(t) in (9) with update laws in (10). Then the error sys-
tem trajectories will converge to the sliding surface s(t) = 0.

Proof. Selecting a posmve definite function as a Lyapunov function candidate in the form of and
V) =131, [52 (85 — ou)® + (Bi — ﬁ,-)z] +106- 0| + 1y - y|? taking its derivative with respect to time, one has

n

V() = [+ (@ — o) + (Bi— BB] + 0 - 0)0+ G — )" (13)

i=1

Since $; = J;€;, so replacing é; from (7) into the above equation, we have

v(t) = i [;bisi(.f-i(x) +Fi(%)0+ Af(x,t) + d}'(t) — &i(¥) — Gy — Agi(y, 1) — d; (£) — ui(t)) + (G — o) + (Bi — BB

i=1

+ (-0 0+ W)Y
Introducing update laws in (10) into the right side of Eq. (14), one obtains 14
V()= Z [Zai(F(X) + Fi(X)0 + A (%,0) + &' (€) = 8i(y) — Gi(y)¥ — Agi(y,£) — (1)) — sidaui(£)
+E&,- — ) ilsil + (Bi = Bi)ilsil| + (0 - 0)' [F))'y — (b — )" [G)]"y (15)
Using the facts S_1, JisiFi(x)0 = 0T [F(x)]"y and 1, 4isiGi(y)y = ¥'[G(¥)]"y, one has
v(t) = Z [isithi®) + Af(x,€) + 4" (6) = 8i(y) — Agi(Y, £) — d}(0)) = sidati(t) + (G — ) ilsi| + (Bi = Bl
+0" @)y =Gy (16)
Substituting u;(t) from (9) into (16), this yields
V(D = Z] [asilhix) + Afix.0) + 4 (0) = £i) — Agiy. 1) — d3(0)) = sids (%) — &i(¥) + Fi(®)d — G
(8 + Bysgn(s:) + kisgn(s)) + (3 — %) Ailsil + (B — B alsil] + 0Ty — ¥ 6"y (17)

It is clear that

n

)<Y [Alsi (AR, 0) — Agi(y, 0]+ [dF'(6) = &5 (0)) = si2s (Fi(x)0 — Gy + (6 + Br)sgn(s) + kisgn(si)

i=1

(8 — on)lsil + (i ﬁ,»wsi@ +0TF@]"y—§ Gy (18)
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By Assumptions 1 and 2, one can obtain
n

Vi <y [7»1\51\(%' + Bi) = sidi (Fi(x)é — Gy + (% + Pi)sgn(si) + kngn(Si)> + (0 — o) dlsi + (Bi — ﬁi)%‘\%\]

+ 0Ty - 9T Gw))'y (19)
It is obvious that
V(D) < 2 [=si2a (Fi®)0 — Gy + (34 + poysen(s:) + kisgn(s)) + Gilsi + fiailsil| + o'y =60y (20)
By the facts 7, si4Fi(x)0 = 07[F(x)]"y and 31, 5:4G:()¥ = ¥7[G()]"y, one has
V(r) < Z [=sida (0 + Bsen(s:) + kisgn(s)) + doilsi + Bilsi (21)
Replacing sgn(s;) by |si/s; into Eq. (21), this yields
V(e) < 32—+ fols] — kel + Sualsi + s (22)

i=1
It is apparent that
n n
V() < =) kidilsil = = > mlsil = —nls| (23)
i=1 i-1
where y;=kid, i=1,2,...,n, 4= [#12,....4a] > 0 and |s| = [|s1],|S2).. . .,|sn|]%. Therefore V(t) becomes

V() = —1is| = —o(t) <0 (24)

where o(t) =n|s| > 0. Integrating Eq. (24) from zero to t yields
t
V(0) > V(t)+/ w(4)d (25)
0

Since V(t) <0,V(0)—V(t) > 0 is positive and finite and that results lim,_. .[; w(i)di exists and is finite (i.e.
lim,_.. fé w(A)di=V(0) — V(t) = 0). Thus, according to the Barbalat lemma, it can be obtained that

lim (t) = lim,_..xy|s| = 0 (26)

t—o0

Since n is greater than zero, (26) implies s = 0. Thus the proof is achieved completely. O

Remark 1. Since the control law (9) contains the sign function as a hard switcher, the undesirable chattering phenomenon
occurs. In order to chattering reduction, the tanh(es;) function, (¢ > 0) is replaced by the sgn function in (9). Therefore, the
final control input becomes:

ui(t) = fi(®) — g(¥) + Fi(x)(é) - Gi(J’)']’ + (% + ﬁi)Sgn(Si) +kitanh(es;), i=1,2,....n (27)

Remark 2. Replacing the tanh(es;) function by the sign(s;) function in (9) has no effect on the robustness and stability of the
RASMC.

Before proving Remark 2, an auxiliary lemma is provided.

Lemma 2. For every given scalar a and positive scalar b the following inequality holds:

a tanh(ab) = |a tanh(ab)| = |a|| tanh(ab)| = 0 (28)

Proof. From the mathematical definition of tanh(a), one has

eab _ e—ab
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eab

Multiplying above equation by &, it yields

1 )a(ez‘”’ -1 (30)

a tanh(ab) = (W

. (eZab—l) > 0 lf a> 07 3
Since { @120 ifa<o, one can obtain
a@®-1) >0 (31
Since (ﬁ) > 0 and from (31), one has
1 a
a tanh(ab) = <W>a(e2 b_1)>0 (32)

Therefore, from the fact that for every scalars z and v, if zv > 0 then zv = |zv| = |z||v| > 0 holds, one can conclude that
a tanh(ab) = |a tanh(ab)| = |a|| tanh(ab)| = 0 (33)

and the proof is completed. O

Proof of Remark 2. Consider the Lyapunov function introduced in the Theorem 1. Replacing the tanh(¢s;) function by the sgn
function in (9) has no effect on the Eqgs. (13)-(21). Therefore, from Eq. (22) one obtains

V(t) < — zn:[fzikisi tanh(es;)] (34)

i=1

From lemma 2 and knowing that 4;k; >0, i=1,2,...,n, one has

n n n
V(t) < =) [~Akisitanh(es;)] = — > —Jikitanh(es;)|lsi| = =Y _ Glsi| = —¢ls] (35)
i1 i=1 i1
where ¢; = Jik|tanh(es;)|, i=1,2,...,n is greater than zero and is equal to zero only when s;=0, i=1,2,...,n and

¢=[&,8a,- .., Cn). Therefore V(t) becomes
V(t) = —Cls| = —(t) <0 (36)

Consequently, according to the Barbalat lemma, it can be concluded that s = 0. Hence the proof is completed. O

Remark 3. Theorem 1 is also valid for the chaos synchronization between two identical chaotic systems with different initial
conditions, uncertainties, external disturbances and unknown parameters, if systems (1) and (2) satisfy f(x) = g{(y) and
F(x)=G{(y),i=1,2,...,n.

4. Numerical simulations

In this section, some numerical simulations are presented to validate the efficiency and effectiveness of the proposed
RASMC. Numerical simulations are carried out using the MATLAB software. The ode45 solver is used for solving differential
equations. The Lorenz [54], Chen [55], and Liu [56] systems are three well-known chaotic systems whose nonlinear equa-
tions are given by

X] = 10(X2 —X1)
Lorenz :{ X, = 28%; — X5 — X1X3 (37)
X3 = X1X3 — 8/3)(3

Y1 =350, - W)
Chen :{ y, =28y, — 7y, —¥1)3 (38)
Y3 =Y1¥3 = 3V3

zl = 10(22 *Z])
Liu : Zz =40z, — 2123 (39)
Z.3 =-2.523 + 42%
In this study, three different pairs of chaotic systems (Lorenz-Chen, Chen-Lorenz, and Liu-Lorenz) are synchronized using

the proposed RASMC. In all cases, 0.6 cost and —0.6 cost disturbances are attached to the master and slave systems, respec-
tively. And the following uncertainties are added to the drive and response systems, respectively.
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Afi = 0.55sin(7x;)
Afy, = 0.55in(27x,) (40)
Afs = 0.5sin(37x3)

and

Ag, = —0.5sin(my;)
Ag, = —0.5sin(2my,) (41)
Ag; = —0.5sin(3my;)

In the following examples, the vectors [0.25,0.25,0.25], [0.5,0.5,0.5], [2,2,2] and [1,1,1] are selected as the initial values of

the update vector parameters &, B, 0 and y, respectively. And, the coefficient ¢ is set to 100. Furthermore, The vector of
switching gains ky, ky, k3 is chosen equal to [10,10,10].

4.1. Chaos synchronization between Lorenz and Chen systems with uncertainties, external disturbances and unknown parameters

To demonstrate the efficiency of the proposed RASMC in synchronizing the Lorenz and Chen systems with uncertainties,
external disturbances and unknown parameters it is assumed that the Lorenz system drives the Chen system. The master
and slave systems can be rewritten in the form of Egs. (1) and (2) as follows:

0 Xx—x1 0 O 10 0.5 sin(7txy) 0.6cost
X= | —XiX3—Xp | + 0 x1 0 28 | + | 0.5sin(27mx;) | + | 0.6cost 4
X1X; 0 0 —x; 8/3 0.5sin(37x3) 0.6cost (42)
N——
f@®) F(x) 0 Af(x.) damt)
and
0 Y2 =W 0 0 35 —0.5sin(my;) —0.6cost uq (t)
y=|yys|+| -¥yi yi+y, O 28 | + | —0.5sin(2my,) | + | —0.6cost | + | ua(t) 3
V1Y 0 0 —Y3 3 —0.5sin(3my;) —0.6cost us(t) (43)
N—— N——
gW) G(y) v Ag(y.t) & (1)

Therefore, using Eq. (7), the error dynamics can be expressed as:

e1=X1—Y1 =y (e2—€1) + (01 — ;) (X2 — %1) + 0.5sin(mx;) + 0.5 sin(my,) + 1.2cost — u; (t)

é2 =X — V2 = (Y3 —¥y)er +per + (02 — Yo +1)X1 — (14 Y3)X2 — X1X3 — ¥1¥3 + 0.58in(27x;) + 0.5 sin(27y,)
+1.2cost — uy(t)

€3 =X3 — Y3 = —Y3e3 + (Y3 — O3)X3 + X1X2 — ¥, ¥, + 0.5sin(37x3) + 0.5sin(3my;) + 1.2 cost — us(t)

(44)
Consequently, three sliding surfaces are selected as:
s; = 10eq
s, = 8e; (45)
S3 = 2@3
Subsequently, according to Eq. (27), the control inputs are taken as:
w (t) = Y1 (ex —er) + (61 — Y1) (X2 — x1) + (&1 + p1)sgn(s1) + 10tanh(1000e;)
Uz (t) = (Y2 — Y1)er + Y2z + (02 — Y2 + ¥1)x1 — (1 +2)X2 — X1X3 — y1¥3 + (02 + f2)sgn(s2) + 10 tanh(800e;)
us(t) = vrses + (3 — 03)X3 + X1X2 — y1¥, + (d3 + B3)sgn(ss) + 10tanh(200es)
(46)

The Lorenz and Chen systems are started with the initial conditions as follows: x;(0) = 6, x(0) = 3, x3(0) = 7 and y(0) =2,
¥2(0)=7, y3(0) = 4.

Fig. 1 illustrates the synchronization errors of the Lorenz and Chen systems, where the control inputs are turned on at
t=5s. As one can see, the synchronization errors converge to the zero, which implies that the chaos synchronization be-
tween the Lorenz and Chen systems is realized. The time responses of the update vector parameters &, B, ¥ and are depicted
in Figs. 2-5, respectively. Obviously, all of the update parameters approach to some constants.
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4.2. Chaos synchronization between Chen and Liu systems with uncertainties, external disturbances and unknown parameters

In this case, the Chen and Liu chaotic systems are synchronized using the introduced RASMC. It is supposed that the Chen
system is the master system and Liu system is the slave system. These systems can be reformed using Eqgs. (1) and (2) as
follows:

0 Y-y O 0 35 0.5 sin(my,) 0.6 cost
Y= 1|y |+ |-n yi+y, 0 28 | + | 0.5sin(2my,) | + | 0.6 cost 47
Y1V 0 0 —Y3 3 0.5sin(3my;) 0.6cost (47)
N——— N———

) F(y) 0 Af(y.0) d" (1)
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and
0 z—-z1 0 0 10 —0.5sin(mz;) —0.6cost uq (t)
zZ=|-z1z3|+ 1|0 z1 0 40 | + | —0.5sin(27wzy) | + | —0.6cost | + | ua(t) 48
47 0 0 -z [25 —0.5sin(37z3) —0.6cost us(t) (48)
———— N——
g(z) G(z) v Ag(zt) ()

According to Eq. (7), the error dynamics using can be developed as:
e =y1— 21 =61(e2—e1) + (61 —¥1)(22 —z1) + 0.5sin(my, ) + 0.5sin(wz;) + 1.2 cost — u; (t)
ey =Yy —2 = (0 — 01)e1 + 02y, + (02 — 01 — ¥3)z1 +y1¥5 + 2123 + 0.5sin(27my,) + 0.5 sin(27z;) + 1.2 cost — u, (t)
é3 =Y3 — 23 = —0se3 + (Y5 — 03)23 + ¥1Y, — 422 + 0.5sin(37y;) + 0.5sin(37z3) + 1.2 cost — us(t)

(49)
Then, three sliding surfaces are defined as:
1 = 20e,
Sy, = 20@2 (50)
S3 = 563

Using Eq. (27), the control inputs are computed as:
U (t) = 01(ex — e1) + (01 — 1) (z2 — 1) + (&1 + P1)sgn(s1) + 10tanh(2000e;)
Uy (t) = (02 — 01)er + 025 + (02 — 01 — Y2)Z1 + Y1Y3 + 2123 + (82 + f2)sgn(sz) + 10 tanh(2000e;) (51)
us(t) = —0se3 + (3 — 03)23 + Y1y, — 422 + (0l + f33)sgn(s3) + 10 tanh(500e;)

The initial conditions for the Chen system are selected as: y;(0) = 6, y»(0) = 8, y3(0) = 10 and for the Liu system are chosen as:
21(0) =2, 22(0) =-2, 23(0) =5.

The synchronization errors between the Chen and Liu systems are shown in Fig. 6, while the control inputs are acted at
t=5s. It can be seen that the synchronization errors converge to the zero, which indicates that the Chen and Liu systems are
indeed synchronized. The time evolutions of the update vector parameters &, B, 6 and y are displayed in Figs. 7-10, respec-
tively. It is clear that all update parameters converge to some fixed values.

4.3. Chaos synchronization between Liu and Lorenz systems with uncertainties, external disturbances and unknown parameters

Here, the efficiency of the proposed RASMC is verified by another example of chaotic systems synchronization. In this
case, the Liu system drives the Lorenz system. The reformulated form of the Liu and Lorenz systems are presented by

0 zZ—-z1 0 O 10 0.5sin(7z) 0.6cost
z=|-z1z3|+ 1|0 z1 0 40 | + [ 0.5sin(2mz;) | + | 0.6 cost 59
472 0 0 —z3 25 0.5sin(37z3) 0.6cost (52)
—_—— ——
f@) F(z) 0 Af(zt) d"(t)
and
0 Xx—-x1 0 O 10 —0.5sin(mx;) 0.6cost uq (t)
X=|-XXx3—X|+ 10 x1 O 28 | +| —0.5sin(27xy) | + [ 0.6cost | + | ux(t) 3
X1Xo 0 0 —x3 8/3 —0.5sin(37mx3) 0.6cost us(t) (33)
——
g(x) G(x) v Ag(xt) & (1)
The error dynamics using Eq. (7) can be presented as:
e1 =21 —Xx1 =01(e2 —e1) + (01 — 1) (X2 — x1) + 0.5sin(mz;) + 0.5 sin(7wx;) + 1.2 cost — uy (t)
€y =2y — Xy = 0261 + (02 — p)X1 — 2123 + X1X3 + X2 + 0.5sin(27z;) + 0.5sin(27x;) + 1.2 cost — u,(t) (54)
63 =73 — X3 = —03€3 + (Y5 — 03)X3 + 422 — X1X» + 0.5sin(37z3) + 0.5 sin(37x3) + 1.2 cost — us(t)
Subsequently, three sliding surfaces are chosen as:
s1 = 156
Sy = ]592 (55)

s3 = 10e3
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Then, the control inputs are derived using the Eq. (27) as follows:

Uy (t) = 01(e2 — e1) + (01 — ¥1) (X2 — X1) + (&4 + B1)sgn(s;) + 10tanh(1500e;)
U (t) = Oze1 + (0 — 2)X1 — 2123 + X1X3 + Xa + (82 + P2)sgn(sy) + 10 tanh(1500e;)
Us(t) = —B3e3 + (Y3 — 03)X3 + 422 — 1%, + (83 + f3)sgn(ss) + 10 tanh(1000e;3)

(56)

The Liu system is initialized with z;(0) = 5, z,(0) = —3, z3(0) = 10 and the Lorenz system is started with x;(0) = 10, x(0) = 2,

X3(0) =4,

Fig. 11 reveals the synchronization errors between the Liu and Lorenz systems, where the control inputs are activated at
t=>5s. It can be observed that the synchronization errors regulate to the zero, which implies that the synchronization objec-
tive is achieved absolutely. The time responses of the update vector parameters &, B, 8 and y are appeared in Figs. 12-15,
respectively. One can see that the update parameters are bounded.
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5. Conclusions

In this paper, the problem of practical synchronization of chaotic systems is investigated. In real world applications, there
are always some uncertainties and external disturbances in the system dynamics. Also, in practical or experimental situa-
tions, the system parameters are inevitably disturbed by external inartificial factors, such as environment temperature, volt-
age fluctuation, mutual interfere between components, and cannot be exactly known in advance. The synchronization may
be destroyed and even broken with the effects of these uncertainties. In this paper, therefore, the effects of the model uncer-
tainties, external disturbances and unknown parameters in synchronizing two different chaotic systems are fully taken into
account. An adaptive sliding mode controller is designed to robustly synchronize two different uncertain chaotic systems
with unknown parameters. Some numerical simulations are presented to show the applicability and feasibility of the pro-
posed scheme.

It is worth noting that three remarkable features of the proposed approach are: (1) it is robust with respect to the model
uncertainties, external disturbances and unknown parameters; (2) it can be easily realized and implemented in real world
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applications (for example in secure communication applications) without requiring the bounds of the model uncertainties,
external disturbances and unknown parameters to be known in advance; (3) it is well applicable for practical synchroniza-
tion of two different (or identical) chaotic systems even when both master and slave chaotic systems are disturbed by the
model uncertainties, external disturbances and unknown parameters.
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