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Abstract—Compressive Sensing (CS) represents a new
paradigm that addresses the problem of power consumption
for collecting data over wireless sensor networks (WSN). Inter-
cluster multi-hop routing, referred to as ICCS, is proposed as
an extension to clustering in WSN utilizing CS to further reduce
power consumption. With ICCS, CS measurements are relayed
from each cluster head (CH) to the base station rather than
being transmitted directly. A greedy algorithm is proposed to
form a routing tree between the CHs and the base station. Total
power consumption for networks supporting intra-cluster and
inter-cluster transmission is formulated and compared to cluster
based compressive sensing. Network characteristics are analyzed
and optimal cases for least power consumption with ICCS are
identified.

I. INTRODUCTION

Saving power consumption in wireless sensor networks

(WSN) is always a critical problem that is highly related to

network lifetime. The networks are envisioned as large ad-hoc

collection of very small autonomous devices that can sense

environmental conditions in their immediate surroundings

while having limited processing, communication capacities

and energy reserve. Since compressive sensing (CS) provides

a new paradigm for collecting data in WSNs, the base station

(BS) only needs M CS measurements to recover all N sensor

readings, precisely (M � N ). Then, many data collection

methods are exploited in WSNs applying CS.

There are some CS-based data collection methods for WSNs

tried to reduce transmission power. CCS paper [1] is the latest

method that investigates the combination between clustering

algorithms and CS. The idea is to partition a WSN into

clusters, in which each cluster head (CH) collects the sensor

readings within its cluster and generates CS measurements to

be forwarded directly to the BS. This process creates block

diagonal projection matrices that can be exploited to save more

consumed power for the networks. The matrices are also well

studied to satisfy CS recovery [2].

In order to save more energy, in this paper, we consider

CCS as a baseline and propose inter-cluster multi-hop routing

to forward CS measurements to the BS through CHs. The

measurements are relayed through intermediate CHs based on

a routing tree formed by our proposed greedy algorithm. We
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formulate the problem with all consumed power components

for data transmission. Based on both analysis and simulation

results, we analyze and suggest the optimal case for such

network in collecting data.

The paper is organized as follows: We review CS theory

and the CCS algorithm as the background and related work

on section II. The problems are analyzed and formulated

in section III and the simulations are presented in section

IV. Finally, conclusion and suggestions for future work are

provided.

II. BACKGROUND AND RELATED WORK

A. Compressive Sensing Basics

1) Sparse presentation of signals: Compressive sens-

ing [3], [4], [5] provides a novel sensing/sampling paradigm

for signals sparsely presented in a proper basis. A signal

x = [x1 x2 . . . xN ]T ∈ RN is defined to be k-sparse if it

has a sparse representation in basis ψ = [ψi,j ] ∈ RN×N ,

where x = ψθ and θ has only k non-zero elements.

2) Signal sampling: Based on the CS paradigm, a k-sparse

signal can be under-sampled and be recovered from only M �
N random measurements y = [y1 y2 . . . yM ]T ∈ RM . These

CS measurements are created by y = φx, where φ = [ϕi,j ] ∈
RM×N is called the measurement matrix and is often a dense

Gaussian matrix or a sparse binary matrix [6].

3) Signal recovery: we can recover x from y by solving

the convex optimization problem based on a certain number

of measurements M = O (k log N/k) as follows

θ̂ = argmin || θ ||1, subject to y = φψθ, (1)

where || θ ||1 =
∑n

i=1 |θi| and x̂ = ψθ̂. The l1 optimization

problem can be solved with linear programming techniques

such as Basis Pursuit (BP) [3].

B. CCS: Clustered-Based Compressive Sensing for Data Col-
lection in WSNs

CCS [1] is divided into two parts. The first is the underlying

clustering that can be based on different methods. We have

chosen K-means [7] and LEACH [8] as two clustering methods

for our simulations. The second is the CS-based data collection

that is based on the following steps:

1) Non-CH sensors send their data once to the CH.
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2) The ith CH (i = 1, 2, . . . , Nc) generates an Mi × Ni

block of Gaussian coefficients (φi). The CH then gen-

erates Mi CS measurements using y
i
= φixi.

3) Each CH sends the measurements and the seed that it

used for generating the random matrix φi to the BS.

4) The BS implements a CS reconstruction algorithm to

find sensor readings x, given the block diagonal matrix

φ with blocks φi and y = [y
1
, y

2
, . . . , y

Nc
].

In a real WSN each cluster may have different number of

sensors and accordingly different numbers of measurements

are required from each CH. The number of measurements

required Mi collecting from cluster ith should be linearly

proportional to the number of sensors Ni in that cluster for

the lowest reconstruction error at the BS.

C. Related work

Clustering is proven to be an effective way to save energy

consumption and upgrade the network lifetime. Many different

clustering algorithms have been studied so far [8], [9], [10],

[11], [12]. Each cluster has a cluster head (CH) and CHs can

be pre-determined [9] or be selected while doing clustering

as in the following algorithms. K-means [7] is a very well-

known and simple clustering algorithm that chooses CHs for

K clusters at the central point of each cluster. This helps to

minimize the intra-cluster power consumption. In general, CHs

drain power much more than other sensors as they transmit

entire cluster’s data to the BS. In LEACH [8], sensor nodes

randomly elect themselves to be CHs. This way, the high-

energy dissipation in communicating with the BS will spread

among the nodes in the network.

Applying CS in collecting data is also an effective way to

reduce the number of required samples from a sparse signal.

Due to the correlation between the sensor readings in WSNs,

the monitored signal can have a sparse representation in a

proper domain such as DCT or wavelet. Accordingly, CS

have found applications in data collection in WSNs. In [13],

[14], [15] CS is applied for tree-based multi-hop routing.

In [16], [17], [18] CS based random walk routing reduce

significant consumed power. Neighborhood based applying CS

is mentioned in [19]. The approach in [20] is to optimize

the transportation cost for multi-hop WSNs using CS. Despite

many studies on application of CS for WSNs, none of them

have investigated the application CS for clustered WSNs.

Papers [1], [21] investigate the integration of the CS and

clustering in WSNs. In CCS sensors are sampled at each

cluster only once. A certain number of CS measurements are

generated at each cluster then transmitted directly to the BS.

For further energy saving, we propose a multi-hop inter-cluster

routing to relay CS measurements through CHs to the BS,

called ICCS. The consumed power is reduced significantly

based on shorter transmitting distances.

III. PROBLEM FORMULATION

A. Network model

To simplify the problem, in this model, we assume that the

sensing area has a circular shape in which the BS is at the

center. We also assume that CHs transmit data based on their

transmission range, not the real distances between them. So

with intra-cluster transmission, sensors still can adjust their

power level to transmit data to the CHs, while all CHs only

use transmission range, called R to connect to other CHs and

the BS. We deploy N sensors uniformly distributed in the

circular area with radius R0, and also, the pass-loss exponent

is assumed to be equal to 2 (α = 2) for simplicity.

We assume the network is divided into Nc non-overlapping

clusters. In our simulations, we considered two well-known

clustering mechanisms, K-means [7] and LEACH [8]. In our

analysis part, we assumes a random clustering similar to

LEACH, in which first Nc out of N nodes in the network

are selected uniformly at random as CHs and the other nodes

find the closest CH to connect to. If the clustering is uniform,

then the number of sensors in each cluster is about N/Nc for

large values of N .

For the reconstruction error related to CS signal recovery

we considered the normalized reconstruction error
||x−x̂||2
||x||2 .
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Fig. 1. Transmissions in the network with inter-cluster multihop routing
when the BS at the center

As shown in Figure 1, CHs receive readings from their

cluster members as non-CH sensors, then they generate and

transmit measurements through other CHs or directly to the

BS at the center depending on their positions.

B. Inter-cluster multi-hop routing in CCS (ICCS)

For networks have small number of clusters, inter-cluster

multi-hop routing may not help because the routing paths may

travel around that might cost more power than transmitting

directly. But with a large number of CHs, it significantly helps

reducing energy to transmit the measurements to the BS. So,

we develop inter-cluster multi-hop routing for CCS for the

purpose of energy saving as follows:

Inter-cluster multi-hop routing in CCS (ICCS): Since we

already have clusters formed by K-means or LEACH, we

develop a greedy distributed algorithm (GDA) to form inter-

cluster routing: We assume all CHs have the same transmission

range (R) that helps CHs communicate to each other within
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range R. An appropriate R should be chosen depending on the

number of CHs formed to ensure that all CHs connected as an

undirected geometry graph. Based on the graph, we can deploy

GDA to form the routing paths for the CHs: All CHs broadcast

their information about number of hops away from the BS to

their neighbors. At the first iteration, only CHs close to the

BS (their Rs cover the BS) have the number of hops (NoH).

They name their NoH as ”1” and broadcast to their neighbors

in the next iterations. After a few iterations, the routing paths

may be formed but not completely done because a CH only

choose one of its neighbors having NoH while the rest may

not have one after a few iterations. So the algorithm keeps

choosing the routing paths until there is no change between

all CHs. This algorithm can be written shortly as below:

All cluster heads (CHs) connected as a graph with the same
transmission range R
1. While (the routing paths is changing)
2. NoH(BS) = 0; i ∈ Nc CHs
3. Nei = set of i’s neighbors
4. if distance [i, j] < R, where j ∈ Nei
5. CH(i) chooses CH(j) when NoH(j) = min{NoH(Nei)}
6. Name NoH(i) = NoH(j) + 1
7. end if
8. end while (Until no change of routing paths between CHs)
The algorithm is simple and distributed since CHs do not

need global information from the network. We are going to

formulate the problem in the next section.

C. Power consumption analysis

As stated in the previous section, non-CH sensors send their

readings to their own CHs only once. We refer to the commu-

nication cost associated with the communication between the

non-CH nodes to CHs as the intra-cluster power consumption

and is denoted as Pintra−cluster. Next, the CHs create the CS

measurements as the combinations of all reading data within

each cluster (yi = φixi) and send the measurements to the

BS. The corresponding power consumption is referred to as

PtoBS . The total power consumption is formed as

Ptotal = (Pintra−cluster + PtoBS). (2)

1) Analysis of Pintra−cluster: We assume to have a uni-

formly distributed WSN divided into Nc clusters with the same

number of sensors as N/Nc, consisting of one CH and ( N
Nc
−1)

non-CH nodes. We have

Pintra−cluster = NC(
N

Nc
− 1)E[r2], (3)

where r is a random variable representing the distance of a

non-CH sensor to its corresponding CH. We can calculate

E[r2] as following

E[r2] =

∫ ∫
r′2ρ(r′, θ) r′ dr′ dθ. (4)

in which ρ(r′, θ) is the node distribution. To make the analysis

tractable, similar to [22], we assume each cluster area is

a circle with radius R = R0/
√
Nc and the density of the

nodes is uniform throughout the cluster area, i.e. ρ(r′, θ) =
1/(πR2

0/Nc). Hence

E[r2] =
1

(πR2
0/Nc)

∫ 2π

θ=0

∫ R

r′=0

r′3dr′ dθ =
R2

0

2Nc
, (5)

and accordingly,

Pintra−cluster = (
N

Nc
− 1)

R2
0

2
. (6)

As we see, the total intra-cluster power consumption is a

decreasing function of the number of clusters.

2) Analysis of PtoBS: We need to formulate this inter-

cluster transmission consumed power as follows

PtoBS =

Nc∑
i=1

NoH(i)×R2 ×M(i), (7)

where M(i) is the number of measurements required taken

from ith cluster, and R2 is the power consumption spent on

each hop when we consider the path-loss exponent as α = 2.

In analysis case, we assume to have all equal size clusters. It

means that all clusters have the same number of sensor nodes.

According to [1], the number of measurements required taken

from each cluster should be linearly proportional to the number

of sensors in each cluster or M(i) = M
Nc

. So, Equation (7) can

be written as

PtoBS = R2 × M

Nc

Nc∑
i=1

NoH(i), (8)

where, M is the total number of measurements required

collected from the network to satisfy an error-target. Nc is the

number of clusters. In [23], Chandler calculated the average

number of relay hops in randomly located radio network.

Based on the idea, Equation (8) can be written as

PtoBS = NoHave ×R2 ×M, (9)

where NoHave is the average number of hops mentioned

in [23] as E[n]. This expectation of the number of hops is

calculated based on the probability of being able to make a

connection between random nodes. These nodes have a same

transmission range. If an area covered by a CH’s transmission

range does not include its destination, there must be at least

one CH exist in the area called A to relay data.

The number of CHs exist in the area A follows Poisson

distribution with the mean value λ = Nc

πR2
0
×A. The probability

of being able to make a connection between a source node and

a destination node is

P (#ofCHs ≥ 1) = 1− P (#ofCHs = 0) (10)

= 1− e−
Nc
πR2

0
×A
, (11)

where A = 2R(2θ − sinθcosθ) and θ = cos−1(x/2R).
Since CHs are randomly distributed and chosen in the

sensing area, the distance between a CH and the BS is a

random variable, shown as x. The probability of being able

to make a connection at distance x using n or less hops is

1135



�

�� �� �� �� �� �� �� �	 �
 �� ��
����

����

����

����

�
��

����

����

����
��������#$�!�������������%&�'(�)�*�����(���*����(����*���(�)��*����+

'�!��,��������!�����-�����������!"�

'�
�!
���
�,
.�
���
-��
��
�

�

�
����������������$�/�,�!��
����������������$�012� 

Fig. 2. Total number of hops routing when changing the transmission range

denoted as Pn(x). The mean value of the number of hops in

a random network is calculated as follows

E[n] =

max(NoH)∑
n=1

n[Pn(x)− Pn−1(x)]/Pmax(NoH)(x) (12)

= max(NoH)−
max(NoH)−1∑

n=1

Pn(x)

Pmax(NoH)(x)
, (13)

where max(NoH) is the maximum number of hops allowed.

3) Analysis of CH’s transmission range R: Choosing an

appropriate transmission range which results the smallest

power consumption for the networks should be considered.

In each routing path, the number of hops is directly related to

the transmission range R. If we increase R, a CH could reach

further CHs and choose one of them to forward CS measure-

ments. It means that the total number of hops can be reduced or

increased with variable values of R, that may effect power con-

sumption. For example, if we increase R, the number of hops

in each routing path might be reduced, but we have to deal

with longer hop distances that definitely consume more energy.

In Figures 2 and 3, we have a 2000 sensor network formed in

500 clusters by K-means and LEACH. We choose different

transmission ranges R = {10, 12, 14, 16, 18, 20}. Figure 2

shows the total number of hops reduced corresponding to the

radius increased. In Figure 3, the total consumed power keeps

increasing as we increase R. This is obviously explained in

Equation (9).

Based on the Figures 2, 3 we should choose a possible

smallest R that results the least consumed power for the

network.

* Additional Analysis for CCS in order to compare with
ICCS: In CCS paper [1], the network is deployed in a square

area that the mean square distance from CHs to the BS is

calculated differently from this case. To compare fairly with

ICCS, we provide additional analysis for CCS in this circular

area network with the BS at the center. The mean value of

consumed power to transmit data from any random CH to the

BS E[d2toBS ] can be calculated following the idea in [17].

As shown in Figure 4, sensors are uniformly randomly

distributed and the CHs are also chosen randomly. dtoBS can
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Fig. 3. The total power consumption when change the transmission range R�
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Fig. 4. Distances from CHs to the BS in a circular area arbitrary network

be considered as a random variable. The maximum distance is

the radius of the circular area R0. E[d2toBS ] can be calculated

in polar coordinates as follows

E[d2toBS ] =

∫ ∫
d′2toBS ρ(d

′
toBS , θ) d

′
toBS dd

′
toBS dθ, (14)

where ρ(d′toBS , θ) = 1/(πR2
0) is the joint probability function

(pdf). Finally, we obtain

E[d2toBS ] =
1

πR2
0

∫ 2π

θ=0

∫ R0

dtoBS=0

d′3toBSdd
′
toBS dθ (15)

=
R2

0

2
. (16)

IV. SIMULATION RESULTS

In this section, we work on 2000 sensors randomly deployed

in a circular area with the radius of R0 = 50. The BS

is set at the center of the sensing area. We first work on

real signals collected from [24] and then 50-sparse random

signals. The sparsifying matrix ψ is chosen as DCT. As

addressed in [1] the total number of measurements required

with different number of clusters in this case is a constant as

M = 500 to satisfy the error-target of 0.1. With k-sparse

signals, it increases linearly as we increase the number of

clusters. The numbers of measurements collected from each

cluster should be proportional to the size of the clusters as

mentioned in [1]. We only consider the maximum number
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Fig. 5. Intra-cluster power consumption when BS at the center in a circle
sensing area
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Fig. 6. Number of measurements required when DCT is considered as the
sparsifying basis.

of clusters up to Nc = 500. At each network divided into

different numbers of clusters, we use different transmission

ranges R = [50 30 25 22 18 14 11] corresponding to

Nc = [10 50 100 200 300 400 500].
We apply K-means and LEACH clustering algorithms to

have two different clustered networks to compare with the

uniform clustering mentioned in our analysis case. Figure 5

shows the total intra-cluster power consumption that calculate

the consumed power to transmit data from non-CH sensors

to their CHs. As shown in Figure 5, the consumed power

becomes very small if the network is divided into that many

clusters. Then, the total power consumption of the network

mainly focuses on the inter-cluster routing paths.

Figure 6 shows the number of required measurements to

reach a target reconstruction error is almost constant versus

different values of Nc. We call this constant value as M0 and

choose M0 = 500 for next calculations.

The total inter-cluster routing power consumption shown in

Figure 7 reduces as we increase the number of clusters for the

networks.

Through Figures 5 and 7, the total power consumption is

reduced by both intra-cluster and inter-cluster transmissions
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Fig. 7. Inter-cluster power consumption when BS at the center in a circle
sensing area
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Fig. 8. Total power consumption ICCS and CCS

as we increase the number of clusters. In Figure 8, ICCS

obviously outperforms CCS when the network is arranged into

very huge number of clusters (Nc ≥ 100).

Working with 50-sparse signals provides us the number of

measurements required increasing linearly as we increase the

number of clusters as shown in Figure 9. As the number of

clusters increased, we need to increase the number of CS

measurements to satisfy an error-target that might increase the

total power consumption for ICCS. As shown in Figure 10,

the total power consumption provides us two options for the

network to consume the least power as Nc = 50 or Nc = 500.

V. CONCLUSION

In this paper we proposed a method called multi-hop inter-

cluster routing for cluster-based data collection in WSNs

utilizing CS (ICCS). The idea is to relay CS measurements

through short distances from CHs to the BS that significantly

saves energy. We further propose an iterative greedy algorithm

to form routing paths for CHs transmit data to the BS. All

power consumptions are analyzed, formulated and simulated

. Both real and sparse signals are applied. With the real data
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Fig. 9. Number of measurements required when working with k-sparse
signals
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Fig. 10. Total power consumption of ICCS when working with 50-sparse
signals

working with DCT as the sparsifying matrix, since the number

of measurements required stays, the total power consumption

is much reduced as far as we increase the number of clusters.

It is different with k-sparse signals in canonical basis since

the number of measurement required increase linearly as the

number of clusters increased. It gives us some specific cases

for the networks to consume the least power.
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