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This paper concentrates on the problem of designing a three-dimensional nonlinear guidance law 
accounting for saturation nonlinearity and the dynamics of missile autopilot based on a command filtered 
backstepping (CFBS) scheme. In the design, the nonlinear kinematics of target–missile engagement 
is considered in the spherical coordinate system and the dynamics of the autopilot is considered 
as a second-order term. The CFBS scheme is utilized to blend the command filtering approach into 
standard backstepping method to avoid the complex computation of the analytic derivatives of the 
intermediate control signals. A command filter with a saturation limiter embedded and some auxiliary
filters are combined together to address acceleration command saturation. Simulation results show that 
even though subject to saturation constraint, the proposed guidance law achieves excellent guidance 
performance in terms of missed distance.
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1. Introduction

The main mission of a missile terminal guidance law is to spec-
ify acceleration commands to the missile’s autopilot such that the 
missile produces a minimum miss distance with respect to its 
target [22]. Proportional navigation (PN) guidance law [28] has 
obtained widespread applications because of its simplicity and 
easy implementation. Also, the effectiveness of PN guidance law 
is fully exhibited in guiding missiles to intercept non-maneuvering 
or weakly maneuvering targets. However, when used for inter-
cepting highly maneuvering and agile targets in the modern wars, 
PN guidance law may fail to meet the desired precision require-
ment. The augmented proportional navigation (APN) guidance law 
[28] modified from PN guidance law can cope with target ma-
neuvers well. Nevertheless, it needs accurate target acceleration 
information which is often unknown or poorly estimated in prac-
tical applications. To deal with highly maneuvering and agile tar-
gets in the absence of its acceleration, some new guidance laws 
based on nonlinear control method and robust control method 
have been proposed, such as Lyapunov-based nonlinear guidance 
laws [20,12,26], nonlinear geometric guidance laws [1,27], differ-
ential game guidance laws [19,29], nonlinear H∞ guidance laws 
[24,25], L2 gain guidance law [31], and sliding-mode guidance laws 
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[32,14,30,13,10]. However, in the design of these guidance laws, 
the closed-loop contour of an auto-piloted missile, normally briefly 
called missile autopilot, is treated as an ideal term.

In practice, for endo-atmospheric missiles, the dynamics of mis-
sile autopilot usually exerts a bad influence on guidance precision, 
especially in the presence of target maneuvers. Thus, it is neces-
sary to consider the dynamics of missile autopilot in the design of 
guidance laws. Actually, the autopilot of a missile is of high-order 
dynamics [16], but for the purpose of designing a guidance law, 
it can be greatly approximated. The most simple approximation of 
the dynamics of missile autopilot is a first-order lag. Considering 
the missile autopilot as a first-order lag, Golestani et al. [5] and 
Sun et al. [23] designed some guidance laws with finite time con-
vergence using backstepping method, and Hexner and Weiss [9]
proposed a stochastic optimal guidance law with significant un-
certainty. However, for agile missiles, the transient performance of 
autopilot cannot be well approximated by the first order lag be-
cause of its property of none overshoot and slow rising rate. Actu-
ally, the dynamics of missile autopilot can be better approximated 
as a second-order oscillatory term. With such an approximation, 
Chwa and Choi [2] proposed an adaptive sliding-mode nonlinear 
guidance law, and Zhou and Qu [33] designed a guidance law with 
terminal impact angle constraint using dynamic surface control.

In practical applications, besides the influence of the dynamics 
of missile autopilot, missile acceleration saturation is another fac-
tor normally encountered in the design of missile guidance law, 
especially when the target’s maneuverability is close to that of 
ed.
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Nomenclature

CFBS Command filtered backstepping
CFBSG CFBS-based guidance
LOS Line-of-sight
ai (i = 1, . . . ,5) Dynamic coefficients
aMr,aMθ ,aMφ Components of missile acceleration along LOS 

axes
aT r,aT θ ,aT φ Components of target acceleration along LOS axes
‖aT θ‖∞,‖aT φ‖∞ Suprema of aT θ and aT φ .
er, eθ , eφ Unit vectors along the spherical coordinate axes
g Gravity acceleration
G1(s) Transfer function from angle of rudder reflection to 

body’s angular rate
G2(s) Transfer function from angle of rudder reflection to ac-

celeration output
Ga(s) Transfer function of the accelerometer
Gd(s) Transfer function of the rudder
Gg(s) Transfer function of the gyroscope
r Target–missile relative range
u0

ic (i = θ,φ) Nominal controls
uic (i = θ,φ) Filtered versions of nominal controls

uθ , uφ Acceleration commands to be designed corresponding 
to aMθ and aMφ

V Velocity of the missile
x j ( j = 1, . . . ,6) Defined state variables
x jc ( j = 1, . . . ,6) Desired values of state variables
x0

jc ( j = 3, . . . ,6) Intermediate virtual controls
x jc ( j = 3, . . . ,6) Filtered versions of intermediate virtual con-

trols
x̃ j ( j = 1, . . . ,6) Tracking errors
δ Angle of rudder reflection
φ LOS elevation angle
μ Upper bound of ui (i = θ, φ)
θ LOS azimuth angle
ςi (i = 1, . . . ,6) Auxiliary filter variables to characterize the ef-

fect of the errors x jc − x0
jc ( j = 3, . . . , 6) and uic − u0

ic
(i = θ, φ) on tracking errors x̃ j ( j = 1, . . . , 6)

ω Body’s angular rate
ωn Natural oscillation frequency of missile autopilot
ζ Damping ratio of missile autopilot

 

 

the homing missile. If a guidance law is designed without con-
sidering acceleration command constraint, it may cause a severe 
deterioration of the guidance performance and even the insta-
bility of the guidance system, leading to the failure of the in-
terception. Therefore, it is quite significant to investigate missile 
guidance laws with bounded acceleration command. Up to now, 
researchers on this topic have mainly focused on utilizing opti-
mal control methods [17,18,15,7,8,6]. For example, deterministic 
formulas of optimal guidance law for acceleration constrained mis-
sile were derived from the missile’s transfer function via directly 
minimizing the Hamilton function subject to constrained control 
to satisfy a quadratic objective [17,18]. Furthermore, the formu-
las were extended to the case of random maneuvering targets and 
noisy measurements [15]. Moreover, a stochastic optimal guidance 
law numerically solved dependent on conditional probability den-
sity function of the estimated states for a missile with bounded 
acceleration was presented [7] and then a linear approximation of 
the guidance law was derived using random-input describing func-
tion (RIDF) [8]. A stochastic optimal guidance law accounting for 
constraints on both missile acceleration command and guidance 
gain was synthesized using the linear quadratic stochastic Gaus-
sian optimal control theory and RIDF [6].

The preceding guidance laws with bounded acceleration were 
designed based on ideal missile autopilot and simplified engage-
ment dynamics in terms of linear target–missile relative range and 
relative velocity in the reference Cartesian coordinate system. It is 
well known that guidance laws steering the line-of-sight (LOS) an-
gular rate are apt to be realized in practical applications. However, 
the relative motion model described in the spherical coordinate 
system must be nonlinear equations. This brings some difficulties 
to the design of guidance law. To the best of our knowledge, it 
has not been investigated to design a guidance law accounting 
for both the acceleration command constraint and the second-
order dynamics of missile autopilot under the nonlinear kinematics 
of target–missile engagement. In this paper, we will address this 
problem by applying the command filtered backstepping scheme 
(CFBS) [3] to the design of guidance law. The CFBS has been ap-
plied to the design of nonlinear flight control law [4,21], but this 
is its first application to the design of guidance law. The command 
filters in the CFBS scheme obviate the need for computing ana-
lytic derivatives in standard backstepping. A saturation limiter is 
Fig. 1. Target–missile engagement geometry in three-dimensional space.

embedded into the command filter to enforce the constraints on 
guidance commands and an auxiliary error compensation is em-
ployed to eliminate the effect of the constraints.

The rest of this paper is organized as follows. In Section 2, the 
three-dimensional nonlinear kinematics of target–missile engage-
ment and the second-order dynamics of the missile autopilot are 
presented. The design procedure of the guidance law based on 
CFBS scheme are formulated in Section 3. Simulation results are 
provided in Section 4 to verify the effectiveness of the proposed 
guidance law. Some concluding remarks are made in Section 5.

2. Formulation of target–missile engagement

Consider three-dimensional target–missile engagement geome-
try in the spherical coordinate system (r, θ, φ), as shown in Fig. 1. 
By virtue of the principles of kinematics, the three relative ac-
celeration components can be expressed by the following set of 
second-order nonlinear differential equations [25]: 

r̈ − rφ̇2 − rθ̇2 cos2 φ = aT r − aMr (1a)

rθ̈ cosφ + 2ṙθ̇ cosφ − 2rφ̇θ̇ sinφ = aT θ − aMθ (1b)

rφ̈ + 2ṙφ̇ + rθ̇2 sinφ cosφ = aT φ − aMφ (1c) 
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Fig. 2. Block diagram of command filter.

Fig. 3. Block diagram of command filter with magnitude limiter.

 

 

In general, during the process of terminal guidance, only the 
accelerations normal to LOS, i.e. aMθ and aMφ , are adjustable. Un-
der the premise that the target–missile radial relative velocity ṙ is 
negative, the objective of designing a guidance law is to determine 
aMθ and aMφ to nullify LOS angular rates θ̇ and φ̇. Therefore, only 
LOS angular motion equations (1b) and (1c) are used for the design 
of the guidance law.

Furthermore, we assume that the closed-loop contour of the 
auto-pilot missile can be approximated as second-order dynamics 
which are given as follows:{

äMθ = −2ζωnȧMθ − ω2
naMθ + ω2

nsat(uθ )

äMφ = −2ζωnȧMφ − ω2
naMφ + ω2

nsat(uφ)
(2)

where

sat(ui) =
⎧⎨
⎩

μ if ui > μ

ui if |ui| ≤ μ, i = θ,φ

−μ if ui < −μ

Define state variables as x1 = θ̇ , x2 = φ̇, x3 = aMθ , x4 = aMφ , 
x5 = ȧMθ , and x6 = ȧMφ and control variables as uθ and uφ . Then, 
Eqs. (1b), (1c), and (2) are rewritten in the following state-space 
form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −2ṙ

r
x1 + 2x1x2 tanφ − x3

r cos φ
+ aT θ

r cos φ

ẋ2 = −2ṙ

r
x2 − x2

1 sinφ cosφ − x4

r
+ aT φ

r
ẋ3 = x5

ẋ4 = x6

ẋ5 = −2ζωnx5 − ω2
n x3 + ω2

nsat(uθ )

ẋ6 = −2ζωnx6 − ω2
n x4 + ω2

nsat(uφ)

(3)

3. CFBS-based guidance law

In this section, the command filters involved in the CFBS 
scheme are presented first, and then the design procedure of CFBS-
based guidance law is elaborated.

3.1. Command filter

The block diagram of the command filter is depicted in Fig. 2. 
The signal xc is the command filtered version of the input signal 
x0

c and ẋc is time derivative of signal xc . The design parameters of 
this filter are ωcf > 0 and ζcf > 0.
The state-space representation of the command filter is 

⎧⎪⎪⎨
⎪⎪⎩

[
q̇1
q̇2

]
=

[
0 1

−ω2
cf −2ζcfωcf

][
q1
q2

]
+

[
0

ω2
cf

]
x0

c[
xc

ẋc

]
=

[
q1
q2

] (4a)

To impose saturation constraint on acceleration command, as 
shown in Fig. 3, a saturation limiter is embedded into the com-
mand filter to form the command filter with magnitude limiter.

The state-space form of command filter with magnitude limiter 
can be expressed as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
q̇1
q̇2

]
=

⎡
⎣ q2

2ζcfωcf[
ω2

cf

2ζcfωcf
(sat(x0

c ) − q1) − q2]

⎤
⎦

[
xc

ẋc

]
=

[
q1
q2

] (4b)

3.2. Design procedure of CFBS-based guidance law

In this section, we will adopt CFBS scheme to design a guidance 
law which incorporates acceleration command saturation and the 
dynamics of missile autopilot.

Define the tracking errors as

x̃ j = x j − x jc, j = 1,2, . . . ,6 (5)

where x1c = 0 and x2c = 0 are the desired values of θ̇ and φ̇ , re-
spectively.

Consider x3 and x4 as the virtual controls and find desired vir-
tual control laws α1 and α2 that stabilize x̃1 and x̃2 by using the 
following control Lyapunov function:

V 1 = 1

2
x̃2

1 + 1

2
x̃2

2 (6)

To render the time derivative of V 1 along the trajectories of the 
system of Eq. (3) under α1 and α2 to be negative definite, i.e.,

V̇ 1 = x̃1

(
−2ṙ

r
x1 + 2x1x2 tanφ − α1

r cosφ
+ aT θ

r cosφ
− ẋ1c

)

+ x̃2

(
−2ṙ

r
x2 − x2

1 sinφ cosφ − α2

r
+ aT φ

r
− ẋ2c

)
< 0,

x̃1 �= 0, x̃2 �= 0 (7) 
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Fig. 4. CFBS-based guidance scheme.

 

 

the virtual control laws α1 and α2 are selected as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 = r cos φ

(
k1x̃1 − 2ṙ

r
x1+

2x1x2 tanφ − ẋ1c

)
+ ε1sgnx̃1

α2 = r

⎛
⎝ k2x̃2 − 2ṙ

r
x2−

x2
1 sinφ cosφ − ẋ2c

⎞
⎠ + ε2sgnx̃2

(8)

where k1 = const. > 0, k2 = const. > 0, ε1 = const. > ‖aT θ‖∞ , and 
ε2 = const. > ‖aT φ‖∞ .

To handle saturation constraints imposed on the acceleration 
commands, the remaining design steps are formulated as follows.

Step 1) Define{
x0

3c = α1 − ς3

x0
4c = α2 − ς4

(9)

where ς3 and ς4 will be defined in step 3).
Let the virtual controls x0

3c and x0
4c go through the command 

filter denoted by Eq. (4a) to produce x3c and x4c as well as their 
derivatives ẋ3c and ẋ4c , respectively. Then implement the following 
two filters:⎧⎪⎪⎨
⎪⎪⎩

ς̇1 = −k1ς1 − 1

r cos φ
(x3c − x0

3c), ς1(0) = 0

ς̇2 = −k2ς2 − 1

r
(x4c − x0

4c), ς2(0) = 0

(10)

to estimate ς1 and ς2.
Step 2) Define the compensated tracking errors as

x̄ j = x̃ j − ς j, j = 1,2, . . . ,6 (11)

Step 3) Define⎧⎪⎪⎨
⎪⎪⎩

x0
5c = −k3 x̃3 + ẋ3c + 1

r cosφ
x̄1 − ς5

x0
6c = −k4 x̃4 + ẋ4c + 1

r
x̄2 − ς6

(12)

where k3 = const. > 0 and k4 = const. > 0. ς5 and ς6 will be de-
fined in step 4).

Let the virtual controls x0
5c and x0

6c go through command filter 
denoted by Eq. (4a) to produce x5c and x6c as well as their deriva-
tives ẋ5c and ẋ6c , respectively. Further, implement the following 
two filters to compute ς3 and ς4 which are involved in Eq. (9):{

ς̇3 = −k3ς3 + (x5c − x0
5c),ς3(0) = 0

ς̇ = −k ς + (x − x0 ),ς (0) = 0
(13)
4 4 4 6c 6c 4
Step 4) Define the nominal controls as⎧⎪⎪⎨
⎪⎪⎩

u0
θc = 1

ω2
n
(−k5 x̃5 + ẋ5c + 2ζωnx5 + ω2

n x3 − x̄3)

u0
φc = 1

ω2
n
(−k6 x̃6 + ẋ6c + 2ζωnx6 + ω2

n x4 − x̄4)

(14)

where k5 = const. > 0, k6 = const. > 0.
Through the command filter with the magnitude limiter,

Eq. (4b), nominal controls u0
θc and u0

φc are filtered to produce 
magnitude-limited controls uθc and uφc . Similarly, the effect on 
tracking errors x̃5 and x̃6 resulting from the difference between 
the achievable control signals (uθc and uφc) and the desired control 
signals (u0

θc and u0
φc) are estimated by implementing the following 

two filters:{
ς̇5 = −k5ς5 + ω2

n(uθc − u0
θc), ς5(0) = 0

ς̇6 = −k6ς6 + ω2
n(uφc − u0

φc), ς6(0) = 0
(15)

The main differences between uic (i = θ, φ) and u0
ic (i = θ, φ) 

are originated from saturation constraint. By virtue of the com-
mand filter with magnitude constraint, uθc and uφc are necessarily 
within the magnitude limits of uθ and uφ , respectively. Conse-
quently, they are implementable physically. We therefore set

sat(uθ ) = uθc, sat(uφ) = uφc (16)

The specified CFBS-based guidance scheme is shown in Fig. 4. In 
spite of the complex form, the CFBS-based guidance is not hard to 
solve because the differential equations included in it are all low-
order and linear. The differential equations can be easily solved 
by 4-order Runge–Kutta algorithm. The time consumed on solv-
ing one-step acceleration command is only 10 ms using Matlab 
programming in an ordinary computer. Also, in consideration of 
the rapid calculation ability of modern computers, the CFBS-based 
guidance is not difficult to implement using DSP onboard the mis-
sile.

Theorem 1. For guidance system (3), the CFBS-based guidance law in-
cluding Eqs. (8)–(16) can guarantee that the compensated tracking er-
rors x̄ j ( j = 1, . . . , 6) defined in Eq. (11) converge to zero exponentially 
as time approaches infinity.

Proof. Note that x0
jc ( j = 3, 4) are filtered through the command 

filter Eq. (4a) rather than the command filter with magnitude lim-
iter Eq. (4b), because they don’t suffer from saturation. Thus, the 
errors |x jc − x0

jc | ( j = 3, 4) can be made arbitrarily small by se-
lecting a sufficiently large parameter ωcf, then ς1 → 0, ς2 → 0 by 
Eq. (10), implying x̃1 → x̄1, x̃2 → x̄2. So we replace x̃1 and x̃2 in 
Eq. (8) with x̄1 and x̄2, respectively, i.e.,  
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 = r cos φ

(
k1x̃1 − 2ṙ

r
x1+

2x1x2 tanφ − ẋ1c

)
+ ε1sgnx̄1

α2 = r

⎛
⎝ k2x̃2 − 2ṙ

r
x2−

x2
1 sinφ cosφ − ẋ2c

⎞
⎠ + ε2sgnx̄2

(17)

After some algebraic manipulation, the dynamics of the tracking 
errors x̃ j ( j = 1, . . . , 6) can be written as 

˙̃x1 = −2ṙ

r
x1 + 2x1x2 tanφ − 1

r cos φ
x0

3c

− 1

r cos φ

(
x3c − x0

3c

) − 1

r cosφ
(x3 − x3c)

+ aT θ

r cos φ
− ẋ1c (18a)

˙̃x2 = −2ṙ

r
x2 − x2

1 sinφ cosφ − 1

r
x0

4c

− 1

r

(
x4c − x0

4c

) − 1

r
(x4 − x4c)

+ aT φ

r
− ẋ2c (18b)

˙̃x3 = x0
5c + (

x5c − x0
5c

) + (x5 − x5c) − ẋ3c (18c)

˙̃x4 = x0
6c + (

x6c − x0
6c

) + (x6 − x6c) − ẋ4c (18d)

˙̃x5 = −2ζωnx5 − ω2
n x3 + ω2

n u0
θc

+ ω2
n

(
uθc − u0

θc

) − ẋ5c (18e)

˙̃x6 = −2ζωnx6 − ω2
n x4 + ω2

n u0
φc

+ ω2
n

(
uφc − u0

φc

) − ẋ6c (18f)

Substituting Eqs. (17), (9), (10), and (12)–(16) into Eq. (18)) and 
combining the error definitions of Eqs. (5) and (11), we have 

˙̃x1 = −k1 x̄1 − x̄3

r cos φ
+ aT θ

r cos φ

− ε1

r cos φ
sgnx̄1 + ς̇1 (19a)

˙̃x2 = −k2 x̄2 − x̄4

r
+ aT φ

r
− ε2

r
sgnx̄2 + ς̇2 (19b)

˙̃x3 = −k3 x̄3 + x̄1

r cos φ
+ x̄5 + ς̇3 (19c)

˙̃x4 = −k4 x̄4 + x̄2

r
+ x̄6 + ς̇4 (19d)

˙̃x5 = −k5 x̄5 − x̄3 + ς̇5 (19e)

˙̃x6 = −k6 x̄6 − x̄4 + ς̇6 (19f)

Combining the compensated tracking error definition of Eq. (11)
with Eq. (19), the compensated tracking error dynamics for x̄ j ( j =
1, 2, . . . , 6) are achieved as 

˙̄x1 = −k1 x̄1 − x̄3

r cos φ
+ aT θ

r cos φ
− ε1

r cos φ
sgnx̄1 (20a)
˙̄x2 = −k2x̄2 − x̄4

r
+ aT φ

r
− ε2

r
sgnx̄2 (20b)

˙̄x3 = −k3x̄3 + x̄1

r cosφ
+ x̄5 (20c)

˙̄x4 = −k4x̄4 + x̄2

r
+ x̄6 (20d)

˙̄x5 = −k5x̄5 − x̄3 (20e)

˙̄x6 = −k6x̄6 − x̄4 (20f)

Define a Lyapunov function candidate on the compensated 
tracking errors x̄ j ( j = 1, 2, . . . , 6) as

V (t) = 1

2

6∑
j=1

x̄2
j (21)

Differentiating V (t) with respect to time along the system tra-
jectories of Eq. (20) yields

V̇ (t) = −
6∑

j=1

k j x̄
2
j + aT θ

r cosφ
x̄1

− ε1

r cosφ
|x̄1| + aT φ

r
x̄2 − ε2

r
|x̄2| (22)

where r is always greater than zero and an appropriate inertial 
reference coordinate system can be established to ensure that the 
LOS elevation angle, φ, belongs to the set (−π/2, π/2) during the 
terminal guidance process. Obviously, r cosφ is always greater than 
zero. Thus, we can get

V̇ (t) ≤ −
6∑

j=1

k j x̄
2
j + 1

r cosφ

(|aT θ | − ε1
)|x̄1| + 1

r

(|aT φ | − ε2
)|x̄2|

≤ −
6∑

j=1

k j x̄
2
j ≤ −k

6∑
j=1

x̄2
j = −2kV (t) (23)

where k = min{k j, j = 1, 2, . . . , 6}. Furthermore,

V (t) ≤ V (0)exp[−2kt]
⇒ V (t) → 0, t → ∞
⇒ lim

t→∞ x̄ j = 0, j = 1, . . . ,6 (24)

According to Theorem 4.10 in [11], the equilibrium point x̄ j
( j = 1, 2, . . . , 6) = 0 of the compensated tracking error system de-
scribed by Eq. (20) is exponentially stable regardless of the nomi-
nal controls u0

θc and u0
φc . �

Theorem 1 leaves open the question of the properties of track-
ing errors x̃1 and x̃2, which should be the key point. However, we 
obtained that x̃1 → x̄1, x̃2 → x̄2 from Eq. (17). Namely, both x1 and 
x2 can asymptotically converge to zero as x̄1 and x̄2 converge to 
zero, satisfying the design objective.

4. Numerical simulations

For notational convience, thereafter we denote the proposed 
CFBS-based guidance law as CFBSG. Numerical simulations will be 
performed to demonstrate the effectiveness of the CFBSG against 
a highly maneuvering target based on an actual missile autopilot 
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Fig. 5. Block diagram of actual missile autopilot.

model. Assume that a tail-controlled missile adopts pure aerody-
namic control. The block diagram of the missile autopilot is as 
shown in Fig. 5.

In Fig. 5, u and aM represent the acceleration command and the 
acceleration output, respectively. The transfer functions are given 
by

Gd(s) = ω2
d

s2 + 2ζdωds + ω2
d

(25)

Gg(s) = ω2
g

s2 + 2ζgωgs + ω2
g

(26)

Ga(s) = ω2
a

s2 + 2ζaωas + ω2
a

(27)

G1(s) = −a3s + a2a5 − a3a4

s2 + (a1 + a4)s + a1a4 + a2
(28)

G2(s) = V

g

a5s2 + a1a5s + a2a5 − a3a4

s2 + (a1 + a4)s + a1a4 + a2
(29)

where ζd = 0.65, ωd = 120, ζg = 0.4, ωg = 440.53, ζa = 0.6, and 
ωa = 1129.94. Also, the inner-loop and outer-loop adopt the body’s 
angular rate feedback and acceleration feedback, respectively and 
Ie(s) and Ce(s) represent controllers of the inner-loop and the 
outer-loop, respectively. Some typical characteristic points are cho-
sen for designing the missile autopilot. For each characteristic 
points, the controllers Ie(s) and Ce(s) are designed using classi-
cal frequency domain method. For example, for a characteristic 
point at the altitude of 15 km where the dynamic coefficients are 
a1 = 0.162, a2 = 0.7155, a3 = 42.713, a4 = 0.258, and a5 = 0.042, 
the inner-loop and outer-loop controllers are respectively designed 
as

Ie(s) = −0.35 (30)

Ce(s) = 0.08(1 + 1.3s)

s(1 + 0.076s)
(31)

Apparently, the dynamics of the missile autopilot from u to aM

must be a high-order and non-minimum phase term. In the design 
of guidance law, we approximate this term with the second-order 
dynamics.

Define an inertial reference coordinate system which is paral-
lel to MXYZ coordinate system in Fig. 1. It is inertially fixed and 
is centered at the missile launch point. In the coordinate system, 
X axis is along the direction of launch in the horizontal plane 
and Z axis is perpendicular to X axis and upward in the verti-
cal plane, Y axis being established according to right-hand rule. 
The missile’s initial position coordinates are xM0 = 50 km, yM0 =
10 km and zM0 = 10 km. Its initial velocity is V M0 = 1000 m/s
and its initial flight-path and heading angles are θM0 = 32.5◦ and 
ψV M0 = 2.4◦ , respectively. The target’s initial position coordinates 
are xT 0 = 80 km, yT 0 = 20 km and zT 0 = 18 km. Its initial ve-
locity is V T 0 = 1300 m/s and its initial flight-path and heading 
angles are θT 0 = 2◦ and ψV T 0 = 150◦ , respectively. The accelera-
tion command bound is μ = 7.5 g. The maneuvers of the target 
are aT θ = −70 sin(πt/3) m/s2 and aT φ = 70 sin(πt/3) m/s2.
Table 1
Command filter parameters.

Command 
variable

Command filter parameters

ζcf ωcf (rad/s)

x0
3c , x0

4c 1 10

x0
5c , x0

6c 1 160

u0
θc , u0

φc 1 180

Fig. 6. Saturated acceleration command in azimuth loop in case 1.

Fig. 7. Saturated acceleration command in elevation loop in case 1.

To demonstrate the effectiveness of the CFBSG, the augmented 
proportional navigation (APN) guidance law [28] and the adap-
tive sliding-mode guidance law (ASMG) [32] are introduced for 
comparison. The APN and ASMG are given by uθ = −3.5ṙθ̇ + aT θ , 
uφ = −3.5ṙφ̇ + aT φ and uθ = −3.5ṙθ̇ + 100θ̇/(|θ̇ | + 0.01), uφ =
−3.5ṙφ̇ + 100φ̇/(|φ̇| + 0.01), respectively, where the target accel-
erations aT θ and aT φ are assumed to be exactly known. The pa-
rameters of the CFBSG are set as ε1 = ε2 = 100, k1 = k2 = 0.5, 
k3 = k4 = 1, k5 = k6 = 1.5, ζ = 0.28, and ωn = 2. The command fil-
ter parameters are given in Table 1. To attenuate chattering, the 
sign function sgnx in the CFBSG is replaced with a continuous 
function x/(|x| + δ), where δ is set to be 0.001.

Case 1: Deterministic case where measurement noise is not con-
sidered.

In this case, the saturated acceleration command in azimuth 
loop and that in elevation loop are plotted in Figs. 6 and 7, respec-
tively. The LOS angular rate in azimuth loop and that in elevation 
loop are plotted in Figs. 8 and 9, respectively. The eventual flight 
path in xz plane and that in xy plane are plotted in Figs. 10 and 11, 
respectively. The missed distances under different guidance laws 
are listed in Table 2.

Figs. 6 and 7 indicate that the acceleration commands under 
the CFBSG experience the occurrence of saturation to some extent. 
Figs. 8 and 9 illustrate that under the CFBSG, the LOS angular rates 
are restricted in a small neighborhood around zero and finally they 
deteriorate due to the occurrence of acceleration command satura-
tion. But the thorough divergence of the LOS angular rates occurs 
at the last instant of interception, indicating that the guidance pre-
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Fig. 8. LOS azimuth angular rate in case 1.

Fig. 9. LOS elevation angular rate in case 1.

Fig. 10. Eventual flight path in xz plane in case 1.

Fig. 11. Eventual flight path in xy plane in case 1.

cision is not badly influenced. The successful interception under 
the CFBSG can be observed from Figs. 10 and 11. The missed dis-
tance under the CFBSG is only 0.03 m, which can be seen from 
Table 2.

In contrast, the LOS angular rates under the APN and ASMG 
diverge a little earlier (see Figs. 8 and 9) due to the harmful influ-
ence of acceleration command saturation (see Figs. 6 and 7) and 
the delay to guidance command due to the dynamics of missile 
autopilot. Thus much larger miss distances are yielded under the 
Table 2
Summary of miss distances.

Guidance law Miss distance in case 1 
(m)

Averaged miss distance 
in case 2 (m)

CFBSG 0.03 0.42
APN 4.76 4.76
ASMG 6.58 6.46

Table 3
Distribution of the miss distances in case 2.

Guidance 
law

Distribution of miss distances (m)

≤ 0.3 ≤ 0.5 ≤ 1.0 ≤ 1.5

CFBSG 48% 71% 94% 100%

APN and ASMG (see Table 2). The APN outperforms the ASMG a 
little because it exactly knows the target acceleration information.

Case 2: Stochastic case where measurement noise is considered.
Here, we will investigate the performance of the proposed CF-

BSG in stochastic case where measurement noise is considered. 
Assume that the LOS angular rates measured by a seeker contain 
white noise with power spectral density (PSD) of 0.00015 rad/s 
and the measurements of the gyroscope and accelerometer also 
contains white noise with PSD of 0.0001 rad/s and 0.0001 m/s2, 
respectively. The figures through one time of simulation are not 
plotted because they are similar with those in case 1 and only 
some “burrs” appear in the acceleration commands and LOS angu-
lar rates. Then 100 times of Monte-Carlo simulations are carried 
out and the resultant averaged miss distances under the CFBSG, 
APN, and ASMG are 0.42 m, 4.76 m, and 6.46 m, respectively, also 
listed in Table 2. Additionally, the distribution of the miss distances 
under the CFBSG is presented in Table 3, revealing that the proba-
bility of miss distance less than 1 m reaches 94%, a very high level.

5. Conclusions

This paper has been concerned with the problem of designing 
a three-dimensional nonlinear guidance law accounting for both 
acceleration command saturation and second-order dynamics of 
the missile autopilot. The guidance law is derived based on CFBS 
scheme. In the design, the time derivatives of the virtual controls 
are obtained by filtering, which removes the complexity of ana-
lytic calculation. The acceleration command saturation is addressed 
with the combination of command filters and extra auxiliary fil-
ters. Simulation results show that the proposed guidance law is 
able to provide an excellent guidance precision even though sub-
ject to missile acceleration saturation constraint and time delay of 
actual missile autopilot.
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