
Mathematical and Computer Modelling 53 (2011) 1664–1669

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Least squares based iterative parameter estimation algorithm for
multivariable controlled ARMA system modelling with finite
measurement data✩

Bo Bao a,∗, Yingqin Xu a, Jie Sheng b, Ruifeng Ding a

a Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of IoT Engineering, Jiangnan University, Wuxi 214122, PR China
b Institute of Technology, University of Washington, Tacoma 98402-3100, USA

a r t i c l e i n f o

Article history:
Received 23 October 2010
Received in revised form 15 December 2010
Accepted 15 December 2010

Keywords:
System modelling
Recursive identification
Iterative identification
Parameter estimation
Least squares
Multivariable systems

a b s t r a c t

Difficulties of identification for multivariable controlled autoregressive moving average
(ARMA) systems lie in that there exist unknown noise terms in the information vector,
and the iterative identification can be used for the system with unknown terms in the
information vector. By means of the hierarchical identification principle, those noise terms
in the information vector are replaced with the estimated residuals and a least squares
based iterative algorithm is proposed for multivariable controlled ARMA systems. The
simulation results indicate that the proposed algorithm is effective.

© 2011 Published by Elsevier Ltd

1. Introduction

System identification is an important approach to model dynamical systems and has been used in many areas such
as chemical processes [1], and signal processing [2]. Several methods have been developed for system identification,
e.g., the least squares methods [3], gradient based methods [4], the maximum likelihood methods [5] and the step response
based method [6,7]. Some useful techniques are used in system identification. For example, the polynomial transformation
technique is used to deal with the dual-rate sampled-data systems and the systems with missing observations [8]; the
auxiliary model identification idea is used to handle the cases that the information vector contains unknown intermediate
variables [9–11]; the hierarchical identification principle is used to reduce the computational cost [12–15]; the multi-
innovation identification theory [16–27] and the iterative identification method [11,28–31] make sufficient use of all
input–output data and can improve the parameter estimation accuracy.

The least squares based and gradient based iterative methods have been used to solve some matrix equations [32–42].
Also, the iterative methods are very useful for system identification, e.g., Ding et al. proposed a least squares based and a
gradient based iterative identification method for OE and OEMA systems [11], and presented a least squares based iterative
algorithm for Hammerstein nonlinear ARMAX systems [28]. Liu et al. developed a least squares based iterative identification
method for a class of multirate sampled-data systems [31]. Han et al. gave a hierarchical least squares based iterative
identification algorithm for a class of multivariable CARMA-like systems [15]. In this paper, we propose a least squares
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based iterative identification method for multivariable controlled ARMA systems. The multivariable model considered in
this paper is different from the model in [15].

The rest of this paper is organized as follows. Section 2 derives a least squares based iterative algorithm for the
multivariable controlled ARMA systems and gives the identification steps in detail. Section 3 provides a simulation example
to show the effectiveness of the proposed algorithm. Finally, concluding remarks are given in Section 4.

2. The derivation of identification algorithm

Consider a multivariable system described by the following controlled ARMA model (multivariable CARMA model for
short),

A(z)y(t) = B(z)u(t) + D(z)v(t), (1)

where u(t) = [u1(t), u2(t), . . . , ur(t)]T ∈ Rr is the system input vector, y(t) = [y1(t), y2(t), . . . , ym(t)]T ∈ Rm the
system output vector and v(t) = [v1(t), v2(t), . . . , vm(t)]T ∈ Rm the white noise vector with zero mean, z−1 is a unit delay
operator: z−1y(t) = y(t − 1), A(z), B(z) and D(z) are matrix-coefficient polynomials in z−1 with degrees na, nb and nd,
respectively, and

A(z) = I + A1z−1
+ A2z−2

+ · · · + Anaz
−na ,

B(z) = B1z−1
+ B2z−2

+ · · · + Bnbz
−nb ,

D(z) = I + D1z−1
+ D2z−2

+ · · · + Dndz
−nd .

Ai ∈ Rm×m, Bi ∈ Rm×r and Di ∈ Rm×m are the matrix coefficients to be estimated. Assume that the orders na, nb and nd are
known and u(t) = 0, y(t) = 0 and v(t) = 0 as t ⩽ 0.

The goal of this paper is to present an iterative algorithm to estimate thematrices Ai, Bi and Di from themeasured inputs
and outputs {u(t), y(t) : t = 1, 2, . . . , L} (L denotes the data length), using the least squares principle.

Let T be the matrix transpose. Define the parameter matrix θ and the information vector ϕ(t) as

θT
:= [A1,A2, . . . ,Ana , B1, B2, . . . , Bnb ,D1,D2, . . . ,Dnd ] ∈ Rm×n,

ϕ(t) := [−yT(t − 1), −yT(t − 2), . . . ,−yT(t − na), uT(t − 1), uT(t − 2), . . . , uT(t − nb),

vT(t − 1), vT(t − 2), . . . , vT(t − nd)]
T

∈ Rn, n := mna + rnb + mnd (2)

then the system model in (1) can be equivalently written as

y(t) = θTϕ(t) + v(t). (3)

Eq. (3) is the identification model for the multivariable system in (1).
Consider the data from t = 1 to t = L, and define the stacked output matrix Y (L), the stacked information matrix 8(L)

and the stacked white noise matrix V (L) as

Y (L) := [y(1), y(2), . . . , y(L)] ∈ Rm×L,

8(L) := [ϕ(1), ϕ(2), . . . ,ϕ(L)] ∈ Rn×L,

V (L) := [v(1), v(2), . . . , v(L)] ∈ Rm×L.

Note that Y (L) and 8(L) contain all the measured data {u(t), y(t) : t = 1, 2, . . . , L}. From (3), we have

Y (L) = θT8(L) + V (L). (4)

Define a quadratic criterion function:

J(θ) := ‖Y (L) − θT8(L)‖2, ‖X‖
2

:= tr[XXT
]. (5)

Note that V (L) is a white noise matrix with zero mean. For the optimization problem in (5), minimizing J(θ) and letting its
partial derivative with respect to θ be zero give

∂J(θ)
∂θ

= −2[Y (L) − θT8(L)]8T(L) = 0.

Assume that the information vectorϕ(t) is persistently exciting, that is, [8(L)8T(L)] is an invertiblematrix, then from above
equation, we can obtain the least squares estimate (LSE) of θ:

θ̂ = [8(L)8T(L)]−18(L)Y T(L)

=


L−

t=1

ϕ(t)ϕT(t)

−1 L−
t=1

ϕ(t)yT(t). (6)
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However, from (2), we can see that the information vector ϕ(t) (t = 1, 2, . . . , L) contain the unmeasurable noise terms
v(t − i) (i = 1, 2, . . . , nd), thus Eq. (6) cannot give the estimate θ̂ directly. The commonly used method is to replace the
unmeasurable noise termswith their estimated residuals. In this paper, we propose an iterative identificationmethod using
the hierarchical identification principle. Let k = 1, 2, 3, . . . be an iteration variable, and θ̂k be the estimate of θ at iteration
k, ϕ̂k(t) denote the information vector obtained by replacing the inner unknown v(t−i) inϕ(t)with the estimate v̂k−1(t−i)
at iteration k − 1, and 8̂k(L) denote the stacked information matrix obtained by replacing ϕ(t) in 8(L) with ϕ̂k(t), i.e.,

ϕ̂k(t) := [−yT(t − 1), −yT(t − 2), . . . ,−yT(t − na), uT(t − 1), uT(t − 2), . . . , uT(t − nb),

v̂T
k−1(t − 1), v̂T

k−1(t − 2), . . . , v̂T
k−1(t − nd)]

T
∈ Rn,

8̂k(L) := [ϕ̂k(1), ϕ̂k(2), . . . , ϕ̂k(L)] ∈ Rn×L. (7)

From (3), we have

v(t) = y(t) − θTϕ(t).

If ϕ(t) and θ are replaced with their estimates ϕ̂k(t) and θ̂k, then the estimate of v(t) at iteration k can be computed by

v̂k(t) = y(t) − θ̂
T
kϕ̂k(t). (8)

Replacing8(L) in (6)with 8̂k(L) gives the least squares based iterative parameter estimation algorithm for themultivariable
CARMA systems (CARMA-LSI):

θ̂k = [8̂k(L)8̂
T
k(L)]

−18̂k(L)Y T(L), k = 1, 2, 3, . . . (9)

8̂k(L) = [ϕ̂k(1), ϕ̂k(2), . . . , ϕ̂k(L)], (10)

Y (L) = [y(1), y(2), . . . , y(L)], (11)

ϕ̂k(t) = [−yT(t − 1), −yT(t − 2), . . . ,−yT(t − na), uT(t − 1), uT(t − 2), . . . , uT(t − nb),

v̂T
k−1(t − 1), v̂T

k−1(t − 2), . . . , v̂T
k−1(t − nd)]

T, (12)

v̂k(t) = y(t) − θ̂
T
kϕ̂k(t), t = 1, 2, . . . , L. (13)

In this algorithm, the initial value v̂0(t) is often chosen as a random vector. From (9)–(13), we can see that the CARMA-LSI
algorithm performs a hierarchical interactive process: when computing the parameter estimates θ̂k, the unknown noise
terms v(t − i), i = 1, 2, . . . , nd, in the information vector are replaced with their corresponding estimates v̂k−1(t − i) at the
k − 1th iteration, while the noise estimates v̂k(t) at iteration k are computed from the parameter estimates θ̂k.

The identification steps of the CARMA-LSI algorithm to compute θ̂k(t) are listed as follows

1. Collect the input–output data {u(t), y(t) : t = 1, 2, . . . , L}(L ≫ n) and form the stacked output matrix Y (L) by (11).
2. Let k = 1, set v̂0(t) a random vector.
3. Form ϕ̂k(t) by (12), and then form 8̂k(L) by (10).
4. Update the estimate θ̂k by (9).
5. Compute v̂k(t) by (13).
6. Compare θ̂k with θ̂k−1, if they are sufficiently close, or for some pre-set small ε, if

‖θ̂k − θ̂k−1‖ ⩽ ε

then terminate this procedure and obtain the iterative time k and estimate θ̂k; otherwise, increase k by 1 and go to step 3.

The flowchart of computing the parameter estimate θ̂k is shown in Fig. 1.

3. Example

In this section, an example is given to show that the proposed iterative algorithm is effective. Consider the following
2-input and 2-output system:[

y1(t)
y2(t)

]
+

[
0.60 0.50

−0.80 1.00

] [
y1(t − 1)
y2(t − 1)

]
=

[
1.50 −0.40

−0.50 1.10

] [
u1(t − 1)
u2(t − 1)

]
+

[
v1(t)
v2(t)

]
+

[
0.20 −0.10

−0.10 0.60

] [
v1(t − 1)
v2(t − 1)

]
.

Here, {u1(t)} and {u2(t)} are taken as persistent excitation signal sequences with zero mean and unit variance, {v1(t)} and
{v2(t)} as white noise sequences with zero mean and variances σ 2

1 = σ 2
2 = 0.502. Applying the CARMA-LSI algorithm
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Fig. 1. The flowchart of computing the CARMA-LSI parameter estimate θ̂k .

Table 1
The CARMA-LSI parameter estimates and errors (L = 1000).

k 1 2 3 4 5 6

a11 = 0.60000 0.59989 0.59991 0.59991 0.59991 0.59991 0.59992
a12 = 0.50000 0.50009 0.50007 0.50007 0.50007 0.50007 0.50007
b11 = 1.50000 1.53201 1.52962 1.53039 1.53052 1.53053 1.53053
b12 = −0.40000 −0.40837 −0.40712 −0.40649 −0.40593 −0.40584 −0.40583
d11 = 0.20000 0.00440 0.21978 0.23909 0.24087 0.24088 0.24086
d12 = −0.10000 0.01175 −0.07751 −0.11764 −0.12421 −0.12427 −0.12421
a21 = −0.80000 −0.79959 −0.79963 −0.79963 −0.79962 −0.79962 −0.79964
a22 = 1.00000 0.99959 0.99964 0.99963 0.99963 0.99964 0.99963
b21 = −0.50000 −0.48619 −0.48893 −0.48960 −0.48993 −0.48998 −0.48998
b22 = 1.10000 1.11032 1.09918 1.09497 1.09308 1.09277 1.09276
d21 = −0.10000 −0.01132 −0.07535 −0.11506 −0.12093 −0.12093 −0.12092
d22 = 0.60000 0.01841 0.43624 0.57962 0.60221 0.60238 0.60236
δ (%) 24.67664 6.70177 2.34000 2.41533 2.41777 2.41642

Table 2
The CARMA-LSI parameter estimates and errors (L = 2000).

k 1 2 3 4 5 6

a11 = 0.60000 0.59990 0.59993 0.59993 0.59992 0.59993 0.59993
a12 = 0.50000 0.50033 0.50031 0.50031 0.50032 0.50031 0.50031
b11 = 1.50000 1.52074 1.51557 1.51486 1.51460 1.51456 1.51455
b12 = −0.40000 −0.39568 −0.39719 −0.39705 −0.39683 −0.39679 −0.39678
d11 = 0.20000 0.01671 0.19748 0.21280 0.21364 0.21360 0.21360
d12 = −0.10000 −0.01715 −0.07863 −0.11148 −0.11515 −0.11521 −0.11521
a21 = −0.80000 −0.79991 −0.79994 −0.79995 −0.79993 −0.79993 −0.79994
a22 = 1.00000 0.99994 1.00000 0.99999 0.99999 1.00000 1.00000
b21 = −0.50000 −0.49558 −0.48877 −0.48603 −0.48500 −0.48483 −0.48481
b22 = 1.10000 1.09733 1.09810 1.09686 1.09611 1.09596 1.09594
d21 = −0.10000 −0.02135 −0.08146 −0.10545 −0.11015 −0.11043 −0.11045
d22 = 0.60000 0.02569 0.40962 0.52741 0.54755 0.54946 0.54963
δ (%) 24.00801 7.56540 3.03650 2.38901 2.32915 2.32408

in (9)–(13) to estimate the parameter matrix θ of this system. The parameter estimates and their estimation errors with
the data length L = 1000, L = 2000 and L = 3000 are shown in Tables 1–3, where the estimation error is defined as
δ := ‖θ̂k − θ‖/‖θ‖.
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Table 3
The CARMA-LSI parameter estimates and errors (L = 3000).

k 1 2 3 4 5 6

a11 = 0.60000 0.60005 0.60005 0.60005 0.60005 0.60005 0.60005
a12 = 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000
b11 = 1.50000 1.50744 1.50452 1.50436 1.50425 1.50423 1.50423
b12 = −0.40000 −0.41562 −0.41347 −0.41354 −0.41342 −0.41340 −0.41340
d11 = 0.20000 0.01038 0.16975 0.18386 0.18587 0.18611 0.18613
d12 = −0.10000 0.00825 −0.05506 −0.08387 −0.09068 −0.09126 −0.09127
a21 = −0.80000 −0.79995 −0.79996 −0.79997 −0.79996 −0.79996 −0.79997
a22 = 1.00000 0.99992 0.99994 0.99994 0.99994 0.99994 0.99994
b21 = −0.50000 −0.51447 −0.50962 −0.50968 −0.50934 −0.50928 −0.50928
b22 = 1.10000 1.09646 1.09933 1.09930 1.09869 1.09858 1.09858
d21 = −0.10000 −0.01091 −0.05595 −0.08684 −0.09168 −0.09193 −0.09194
d22 = 0.60000 0.00119 0.42970 0.56287 0.57790 0.57801 0.57802
δ (%) 25.18160 7.22840 1.90336 1.31543 1.29898 1.29799

From the simulation results in Tables 1–3, we can draw the following conclusions:

1. The estimation errors δ are becoming smaller (in general) as the iterations k increases. Thus the proposed algorithm for
multivariable CARMA systems is effective.

2. A longer data length L leads to a smaller estimation error under the same noise level.
3. The CARMA-LSI algorithm converges very fast and needs only a few iterations to converge to their true values.

4. Conclusions

This paper presents a least squares based iterative parameter estimation algorithm for multivariable controlled ARMA
systems. The basic idea is to use the iterative technique and to replace the unknown terms in the information vector with
their iterative estimates. Since the proposed algorithm makes full use of the measured input–output data, it can provide
more accurate parameter estimates than existing recursive algorithms. The proposed algorithm can be extended to identify
time-varying systems [43], nonlinear systems [44–48], dual-rate/multirate systems [49–58], as well as to design filters
[59–62] and estimate states [63].
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