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1. INTRODUCTION

The existing approaches for multi-input multi-output
(MIMO) control system design were mostly developed
for linear systems, for example, based on matrix tech-
nique and polynomial representation of multivariable sys-
tems (Wolovich (1974)), Nyquist techniques (Postleth-
waite and MacFarlane (1979)), geometric approach (Won-
ham (1979)), frequency domain methods (Skogestad and
Postlethwaite (2005)), state-space approach for multivari-
able controller design and decoupling control (Morgan
(1964)). Problems of multivariable controller design, de-
coupling of control channels and disturbance rejection are
the areas of the lively interests for many researchers at
present (Chang and Davison (1995); Astrom et al. (2001);
Vu et al. (2007)).

The problem of output regulation in order to achieve
asymptotic tracking of prescribed trajectories and/or
asymptotic disturbance rejection for fixed nonlinear sys-
tems, in the presence of exosystem-generated commands
and disturbances is highlighted by Byrnes and Isidori
(1998). The output regulation for a certain class of nonlin-
ear MIMO systems with nonlinear internal model and high
gain feedback was discussed by McGregor et al. (2006).
Asymptotic regulation of minimum phase nonlinear sys-
tems using output feedback and high-gain observer was
discussed by Mahmoud and Khalil (1996).

The decoupling of control channels and disturbance re-
jection for multivariable nonlinear control systems can be
provided based on sliding mode control (Utkin (1992);
Young (1978); Slotine and Sastry (1983); Piltan and Su-
laiman (2012)), control with a high gain in feedback
(Meerov (1965); Young et al. (1977); Krutko (1995)). The
special feature of such advanced techniques of control
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system design is the presence of two-time-scale motions
in the closed-loop system. Therefore, the singular per-
turbation technique (or time-scale separation technique)
may be used for analysis of closed-loop system properties
(Kokotović et al. (1999)).

In this paper, the discussed design methodology for MIMO
tracking control is the development of the results presented
in (B�lachuta et al. (1999); Yurkevich (1995, 2004)) where a
distinctive feature is that two-time-scale motions are artifi-
cially forced in the closed-loop system. Stability conditions
imposed on the fast and slow modes, and a sufficiently
large mode separation rate, can ensure that the full-order
closed-loop system achieves desired properties: the output
transient performances are as desired, and they are insen-
sitive to parameter variations and external disturbances.
The paper is organized as follows. At the beginning, the
design of tracking PI controllers is discussed for MIMO
nonlinear systems. Second, the design of tracking PID
controllers is treated for MIMO nonlinear systems as well.
Third, simulation results of a two-link manipulation robot
tracking control system are presented.

2. MIMO PI CONTROLLER DESIGN

2.1 Control problem statement

Consider a MIMO nonlinear system of the form

y(1) = f(y) + G(y)u + w, (1)

where y(1) = dy/dt, y = [y1, . . . , yp]T is the measurable
output, u = [u1, . . . , up]T is the control, w = [w1, . . . , wp]T
is the vector of unknown bounded external disturbances.

Let us assume that the condition
det G(y) �= 0 ∀ y ∈ Ωy (2)

is satisfied, where Ωy is the bounded working set of the
nonlinear system (1).
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A control system is being designed so that
lim

t→∞
‖e(t)‖ = δ, (3)

where e(t) is an error of the reference input realization,
e(t) = r(t)− y(t), r(t) = [r1(t), . . . , rp(t)]T is the reference
input, r(t) is a smooth vector function of the time t such
that ‖dr(t)/dt‖ ≤ r̄max < ∞ ∀ t, and δ is an arbitrary
small positive value.

2.2 MIMO tracking PI controller

Let us consider the control law given by
u = K0ũ, (4)

µũ(1) = T−1e + e(1), (5)
where µ = diag{µ1, . . . , µp}, T = diag{T1, . . . , Tp}, µi > 0,
Ti > 0 for all i = 1, . . . , p, and K0 is the nonsingular matrix
which will be specified below.

Note, due to diagonal structure of the matrices µ and
T , the MIMO tracking controller (4),(5) consists of p lin-
ear controllers C1, . . . , Cp generating the auxiliary control
vector ũ and accompanied by the matching matrix K0.
This structure is called as the centralized output feedback
tracking controller, where the generalized block diagram
of the discussed MIMO control system is represented by
Fig. 1.

Fig. 1. Block diagram of the discussed MIMO control
system

The each i-th linear controller Ci has the form

µiũ
(1)
i = T−1

i ei + e
(1)
i

and one may be expressed in terms of transfer functions,
that is the structure of the conventional PI controller given
by

ũi(s) =
[

1
µiTis

+
1
µi

]
ei(s).

2.3 Two-time-scale motion analysis

In accordance with (1),(4), and (5), the equations of the
closed-loop system are given by

dy

dt
= f(y) + G(y)K0ũ + w, (6)

µ
dũ

dt
= T−1e +

de

dt
, (7)

where e(1) = r(1) − y(1). Substitution of (6) into (7) yields
the closed-loop system equations in the form

dy

dt
= f(y) + G(y)K0ũ + w, (8)

µ
dũ

dt
=−K0G(y)ũ +

dr

dt
+ T−1[r − y] − f(y) − w. (9)

If µ → 0, the closed-loop system equations (8),(9) have the
standard singular perturbation form, then fast and slow

modes are artificially forced in the system (8),(9) where
the time-scale separation between these modes depends on
the parameters of the matrix µ. Accordingly, the singular
perturbation method may be used to analyze the closed-
loop system properties (Kokotović et al. (1999)).

From (8),(9), we obtain the fast-motion subsystem (FMS)
given by

µ
dũ

dt
= −K0G(y)ũ

+
dr

dt
+ T−1[r − y] − f(y) − w,

(10)

where r(t), r(1)(t), y(t) and w(t) are treated as the frozen
variables during the transients in (10).

Since µi > 0 ∀ i and in accordance with (2), the FMS
stability can be provided by selection of K0 such that all
eigenvalues of the matrix G(y)K0 have strictly positive
real part for all y ∈ Ωy. The characteristic polynomial of
the FMS (10) is

AFMS(s) = det[µs + G(y)K0]. (11)
Take for simplicity, the matching matrix K0 such that
K0 = G−1(y). As the result, the FMS characteristic
polynomial is factorized such that

AFMS(s) =
p∏

i=1

(µis + 1). (12)

If the FMS (10) is stable and µ → 0, then after the rapid
decay of transients in (10), we have the steady state (more
precisely, quasi-steady state) for the FMS, where ũ = ũs

and

ũs = [K0G(y)]−1

[
dr

dt
+ T−1[r − y] − f(y) − w

]
.

From (8),(9), the steady state of the FMS (10) yields the
following reduced order system:

dy

dt
= f(y) + G(y)K0ũ

s + w,

0 = −K0G(y)ũs +
dr

dt
+ T−1[r − y] − f(y) − w.

(13)

By eliminating ũs from (13), we obtain the equations of
the slow motion subsystem (SMS)

e(1) + T−1e = 0. (14)
The characteristic polynomial of the SMS (14) is

ASMS(s) = det(sIp + T−1) =
p∏

i=1

(s + T−1
i ).

So, if the steady state of the FMS (10) takes place, then
the closed-loop system equations (8),(9) imply the SMS
(14). As the result, if a sufficient time-scale separation
between the fast and slow modes in the closed-loop system
is maintained and exponential convergence of FMS tran-
sients to equilibrium is provided, then after the damping
of fast transients the behavior of error prescribed by (14)
is fulfilled. Note, due to diagonal structure of matrix T in
(14), the almost perfect decoupling of control channels is
provided as well.

The almost perfect rejection of interaction between loops,
nonlinearities, and unknown external disturbances is pro-
vided due to increase of time-scale separation degree be-
tween the fast and slow modes in the closed-loop system
(8),(9) by selection µi such that
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µi ≤ Ti/η,

where η is the time-scale separation degree, for example,
η ≥ 10.

3. MIMO PID CONTROLLER DESIGN

3.1 Control problem statement

Consider a MIMO nonlinear system given by
y(2) = f(y(1), y) + G(y(1), y)u + w, (15)

y = [y1, . . . , yp]T is the measurable output, u = [u1, . . . , up]T

is the control, w = [w1, . . . , wp]T is the vector of unknown
bounded external disturbances.

Let us assume that the condition
detG(y(1), y) �= 0 ∀ y ∈ Ωy (16)

is satisfied, where Ωy,ẏ is the bounded working set of the
nonlinear system (15).

A control system is being designed so that the condition
(3) holds, where e(t) = r(t) − y(t) and r(t) is a smooth
vector function of time t such that ‖r(j)(t)/dt‖ ≤ r̄max <
∞ ∀ t,∀ j = 1, 2.

3.2 MIMO tracking PID controller

Consider the control law in the form
u = K0ũ, (17)

µ2ũ(2) + Dµũ(1) = T−2e + AT−1e(1) + e(2), (18)
where µ = diag{µ1, . . . , µp}, T = diag{T1, . . . , Tp}, A =
diag{a1, . . . , ap}, D = diag{d1, . . . , dp}, µi > 0, Ti > 0,
ai > 0, di > 0 for all i = 1, . . . , p, and K0 is the nonsingular
matrix which will be specified below.

Due to the diagonal structure of matrices µ, T , D, and
A the MIMO tracking controller (17),(18) consists of p
linear controllers generating the auxiliary control vector ũ
and the matching matrix K0 (Fig. 1), where the each i-th
linear controller Ci has the form

µ2
i ũ

(2)
i + di µiũ

(1)
i = T−2

i ei + aiT
−1
i e

(1)
i + e

(2)
i . (19)

The controller given by (19) can be expressed in terms of
transfer functions such that

ũi(s) =
s2 + aiT

−1
i s + T−2

i

µ2
i s + diµis

ei(s). (20)

3.3 Two-time-scale motion analysis

By introducing the new variables
ȳ1 = y, ȳ2 = y(1),

the MIMO nonlinear system (15) can be rewritten such
that

ȳ
(1)
1 = ȳ2, (21)

ȳ
(1)
2 = f(ȳ1, ȳ2) + G(ȳ1, ȳ2)u + w. (22)

Denote
ū1 = ũ, ū2 = µũ(1), ē1 = e, ē2 = e(1).

ē1 = r̄1 − ȳ1, ē2 = r̄2 − ȳ2,

r̄1 = r, r̄2 = r(1), r̄3 = r(2).

As the result, the controller can be rewritten as

u = K0ū1,

µū
(1)
1 = ū2, (23)

µū
(1)
2 =−Dū2 + T−2ē1 + AT−1ē2 + ē

(1)
2 .

In accordance with (21),(22), and (23), the equations of
the closed-loop system are given by

ȳ
(1)
1 = ȳ2,

ȳ
(1)
2 = f(ȳ1, ȳ2) + G(ȳ1, ȳ2)K0ū1 + w,

µū
(1)
1 = ū2, (24)

µū
(1)
2 =−Dū2 + T−2ē1 + AT−1ē2 + ē

(1)
2 .

Replace ē
(1)
2 in the last equation of (24) by ē

(1)
2 = e(2) =

r̄
(1)
2 − ȳ

(1)
2 and, by taking into account the second equation

of (24), the closed-loop system (24) can be rewritten as

ȳ
(1)
1 = ȳ2,

ȳ
(1)
2 = f(ȳ1, ȳ2) + G(ȳ1, ȳ2)K0ū1 + w,

µū
(1)
1 = ū2, (25)

µū
(1)
2 =−G(ȳ1, ȳ2)K0ū1 − Dū2 + φ(r̄1, ȳ1, r̄2, ȳ2, r̄3, w),

where
φ(r̄1, ȳ1, r̄2, ȳ2, r̄3, w)

= T−2[r̄1 − ȳ1] + AT−1[r̄2 − ȳ2] + r̄3 − f(ȳ1, ȳ2) − w.

The closed-loop system (25) has the standard singular per-
turbation form where fast and slow modes are artificially
forced if µ → 0. Accordingly, similar as above, the singular
perturbation method may be used to analyze the closed-
loop system properties (Kokotović et al. (1999)). From
(25), we obtain the FMS equation given by

µū
(1)
1 = ū2, (26)

µū
(1)
2 =−G(ȳ1, ȳ2)K0ū1 − Dū2 + φ(r̄1, ȳ1, r̄2, ȳ2, r̄3, w),

where φ(·) is treated as the function of the frozen variables
r̄1, ȳ1, r̄2, ȳ2, r̄3, w during the transients in (26).

The characteristic polynomial of the FMS (26) is

AFMS(s) = det
[

µs −Ip

GK0 (µs + D)

]
.

Take for simplicity, the matching matrix K0 in the form
K0 = G−1. As the result, the FMS characteristic polyno-
mial is factorized such that

AFMS(s) =
p∏

i=1

(µ2
i s

2 + diµis + 1). (27)

If the FMS (26) is stable and µ → 0, then after the rapid
decay of transients in (26), we have the steady state (more
precisely, quasi-steady state) for the FMS, where ū1 = ūs

1,
ū2 = ūs

2 = 0, and
ūs

1 = [G(ȳ1, ȳ2)K0]−1φ(r̄1, ȳ1, r̄2, ȳ2, r̄3, w).
From (25), the steady state of the FMS (26) yields the
following reduced order system:

ȳ
(1)
1 = ȳ2,

ȳ
(1)
2 = f(ȳ1, ȳ2) + G(ȳ1, ȳ2)K0ū

s
1 + w,

0 = ūs
2, (28)

0 =−Dūs
2 − G(ȳ1, ȳ2)K0ū

s
1 + φ(r̄1, ȳ1, r̄2, ȳ2, r̄3, w).

By eliminating ūs
1 and ūs

2 from (28), we obtain the SMS
equations
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ȳ
(1)
1 = ȳ2,

ȳ
(1)
2 = T−2[r̄1 − ȳ1] + AT−1[r̄2 − ȳ2] + r̄3. (29)

As far as r̄3 − ȳ
(1)
2 = e(2), r̄2 − ȳ2 = e(1), and r̄1 − ȳ1 = e,

the SMS (29) takes the following form:

e(2) + AT−1e(1) + T−2e = 0. (30)
The characteristic polynomial of the SMS (30) is

ASMS(s) =
p∏

i=1

(s2 + aiT
−1
i s + T−2

i ). (31)

So, if the steady state of the FMS (26) takes place, then
the closed-loop system equations (25) imply the SMS
(30). As the result, if a sufficient time-scale separation
between the fast and slow modes in the closed-loop system
is maintained and exponential convergence of FMS tran-
sients to equilibrium is provided, then after the damping
of fast transients the behavior of error prescribed by (30)
is fulfilled. Note, due to diagonal structure of matrix T in
(30), the almost perfect decoupling of control channels is
provided as well.

The almost perfect rejection of interaction between loops,
nonlinearities, and unknown external disturbances is pro-
vided as well due to increase of time-scale separation
degree between the fast and slow modes in the closed-loop
system (25) via decreasing of µi ∀i.

3.4 Comments on PID controller representation

From the expressions of the FMS characteristic polynomial
(27) and the SMS characteristic polynomial (31) follow
that the representation of the controller in the form
(20) gives the clear meaning of relationships between
parameters of the controller and performances of the fast
and slow transients in the discussed closed-loop system.

Obviously, the controller (20) can be represented in the
form of the conventional PID controller with an additional
first order filter, that is

ũi(s) =
1

µis + di

[
1

µiT 2
i

1
s

+
ai

µiTi
+

1
µi

s

]
ei(s), (32)

and also the transfer function of the controller (20) can be
rewritten in the following well-known form:

ũi(s) =
[
kP

i +
kI

i

s
+

kD
i s

τis + 1

]
ei(s), (33)

where

kP
i =

aidiTi − µi

µid2
i T

2
i

, kI
i =

1
µidiT 2

i

, (34)

kD
i =

µ2
i + d2

i T
2
i − aidiµiTi

µid3
i T

2
i

, τi =
µi

di
. (35)

It is clear to see from (34),(35), the representation of the
controller (20) in the form (33) leads to loss of the clarity
of the relationships between parameters kP

i , kI
i , kD

i , τi

of the controller and performances of the fast and slow
transients in the discussed closed-loop system. That is the
great disadvantage of the widely used representation of
the PID controller in the form (33) in contrast to the
representation given by (20).

4. TRAJECTORY TRACKING CONTROL OF
ROBOT MANIPULATOR

Problem of controller design for tracking of robotic ma-
nipulators is treated in numerous research works (Young
(1978); Slotine and Sastry (1983); Spong and Vidyasagar
(1989); Piltan and Sulaiman (2012); Chanda and Gogoi
(2014)). This problem gives an appropriate example of
the high nonlinear closely coupled dynamical plant and
allows to demonstrate efficiency of the proposed trajectory
tracking controller design methodology which is based on
the singular perturbation technique.

Let us consider a two-link manipulation robot model as
shown on Fig. 2, where the dynamical behavior is described
by the following equations (Young (1978)):

Fig. 2. Two-link robot manipulator model

x
(1)
1 = x2,

x
(1)
2 = [a22/a][β12x2(x2 + 2x4) + γ1g + u1 + w1]

−[a12/a][−β12x
2
4 + γ2g + u2 + w2],

x
(1)
3 = x4, (36)

x
(1)
4 =−[a12/a][β12x2(x2 + 2x4) + γ1g + u1 + w1]

+[a11/a][−β12x
2
4 + γ2g + u2 + w2],

where
a11 = (m1 + m2)l21 + m2l

2
2 + 2m2l1l2 cos(x3),

a12 = m2l
2
2 + m2l1l2 cos(x3), a22 = m2l

2
2,

a = a11a22 − a2
12, β12 = m2l1l2 sin(x3),

γ1 = −(m1 + m2)l1 cos(x1) − m2l2 cos(x1 + x3),
γ2 = −m2l2 cos(x1 + x3),

x = [x1, x2, x3, x4]T = [θ, θ̇, ϕ, ϕ̇]T ,

y1 = x1, y2 = x3, u = [u1, u2]T , w = [w1, w2]T ,

y = [y1, y2]T is the measurable output, u is the vector of
joint torques (control variables), w is the vector of external
joint torques (disturbances), and g is the gravitational
constant.

The model parameters are selected as the following ones:
m1 = m2 = 1[kg], l1 = l2 = 1[m], g = 9.8[m/s2].

The model equations (36) correspond to the nonlinear
system given by (15), where

G(x3) =
1
a

[
a22 −a12

−a12 a11

]
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and, consequently,

G−1(x3) =
[

a11 a12

a12 a22

]
. (37)

Consider the two-input two-output tracking controller
given by (17) and (18), where the matching matrix K0

is selected such that K0 = G−1(x3) in accordance with
(37). Take

T1 = T2 = 0.2 [s], η = 20, µ1 = T1/η, µ2 = T2/η,

a1 = a2 = d1 = d2 = 2.

The simulation results of the system (36) which is
equipped by controller (17), (18) with assigned above
parameters are displayed on Figs. 3–6, where the initial
conditions are

x(0) = [x1(0), x2(0), x3(0), x4(0)]T = [−π/2, 0, 0, 0]T ,

the reference signals are assigned such that

r1(t) =
π

2
+ π sin(t − π

2
), r2(t) = π + π sin(2t − π

2
),

whereas the external joint torques (disturbances) are as-
signed by step-wise functions, that are

w1(t) = 45 · 1(t − 1), w2(t) = −45 · 1(t − 3).

From simulation results displayed on Figs. 3–6 for η = 20,

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

time[s]

r 1,y
1 [r

ad
]

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

time[s]

r 2,y
2 [r

ad
]

Fig. 3. The sine reference inputs r1(t), r2(t) (red lines)
and output responses y1(t), y2(t) (black lines) of the
system (36) with controller (17), (18) for the step
disturbances w1(t), w2(t) (Fig. 6) when η = 20

where µ1 = µ2 = 0.01 s., it follows that the almost perfect
tracking, disturbance rejection, and decoupling of control
channels are provided.

The effect of time-scale separation degree between the fast
and slow modes in the system (36) with controller (17),
(18) is highlighted by plots for the tracking errors e1(t),
e2(t) shown on Fig. 7, where simulation results have been
done for η = 20 (blue lines), η = 40 (red lines), and
η = 80 (black lines). It is clear to see from Fig. 7, the
increase time-scale separation degree η leads to reduce of
the tracking errors. Hence, the tracking errors approach to
zero uniformly as µi → 0 ∀ i.
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time[s]
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Fig. 4. Tracking errors e1(t), e2(t) of the system (36) with
controller (17), (18) for the sine reference inputs r1(t),
r2(t) and the step disturbances w1(t), w2(t) when
η = 20
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Fig. 5. Control variables u1(t), u2(t) of the system (36)
with controller (17), (18) for the sine reference inputs
r1(t), r2(t) and the step disturbances w1(t), w2(t)
when η = 20

5. CONCLUSION

The design methodology based on time-scale separation
technique allows for design of MIMO tracking PI or PID
controllers where the almost perfect decoupling of control
channels and unknown external disturbance rejection are
provided by increasing the time-scale separation degree
between the fast and slow modes that are artificially forced
in the closed-loop system. The analytical expressions for
calculation of controller parameters have been derived.
Moreover, the presented approach gives the clear meaning
of relationships between parameters of the controller and
performances of the transients in the closed-loop system.
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Fig. 6. External disturbances w1(t), w2(t) of the system
(36) with controller (17), (18) when η = 20
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Fig. 7. Tracking errors e1(t), e2(t) of the system (36) with
controller (17), (18) for the sine reference inputs r1(t),
r2(t) and the step disturbances w1(t), w2(t) when
η = 20 (blue lines), η = 40 (red lines), and η = 80
(black lines)
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