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Abstract: This study presents a simple approach to modify the Prony algorithm to extract dominant low-frequency modes
present in ring-down oscillations in power systems. The proposed approach is based on the observation that true modes
present in the ring-down oscillations appear consistently, irrespective of the order of the Prony model. It is shown that the
consistently appearing modes can be extracted using a sorting method. The improved Prony algorithm which has the
feature of extracting only the true modes present in the input signal is utilised to propose an oscillation monitoring
algorithm in this study. The suitability of the proposed oscillation monitoring algorithm for real-time monitoring of low-
frequency inter-area oscillations is demonstrated using synthetic signals and simulated signals of different test systems.
1 Introduction

Electromechanical oscillations are a characteristic of an
interconnected electrical power system. Among different types of
electromechanical oscillations, inter-area oscillations, which are the
oscillatory modes involving the rotors of generators in different
areas, have gained the attention of power system engineers. This is
because a stable or a well-damped inter-area mode can become
negatively-damped or poorly-damped due to changes in power
system structure, operating conditions, and load characteristics [1].
As explained in [2, 3], one of the root causes for a major system
collapse may be the unacceptable damping of an inter-area mode.
Due to this reason, the power system may collapse due to
gradually increasing rotor oscillations over several seconds.
Therefore, continuous monitoring of poorly-damped modes
provides the information on whether the power system is operating
closer to the instability and is useful for initiating preventive
control actions.

Real-time monitoring of power systems is facilitated by the
availability of synchronised data from phasor measurement units
(PMUs). PMUs provide time-tagged voltage and current phasors
with respect to a common reference [4]. These data are available at
the control centre at a higher rate compared to the traditional
supervisory control and data acquisition system data, thereby
facilitating a wide range of applications in power systems.
However, these time series data need to be processed using
appropriate algorithms to extract useful information for the operator.

The literature on monitoring small-signal rotor angle stability of
the power system addresses two operating modes, (i) ambient or
normal operation, and (ii) transient or ring-down operation [5].
Randomly changing load on the power system is the driving force
behind the mode excitation in the ambient operation. In contrast,
the transient operation relates to the non-linear behaviour of the
power system subsequent to large-magnitude disturbances and the
ring-down oscillations are observed in such situations.
Thambirajah et al. [5] summarised different techniques used to
assess the said stability under the two operating modes. The major
area of interest in this study is the ring-down condition, which has
been analysed using linear techniques, such as Prony [6], Kalman
filter [7], Hankel total least squares [8], matrix pencil [9],
Steiglitz-Mcbride and eigensystem realisation [10] algorithms.
Furthermore, the algorithms based on the Hilbert–Huang
transformation [11], and the Teager–Kaiser energy operator [12]
do not use linear approximations to determine the mode
parameters in the ring-down oscillations. The multi-dimensional
Fourier ring-down analysis algorithm applies the Fourier transform
on multiple measurements in power systems to determine the
mode parameters under the ring-down conditions [13] and the
robust recursive least squares algorithm is capable of monitoring
the low-frequency modes in both ambient and ring-down
conditions [14].

In proposing these different algorithms, Prony algorithm has been
treated as the reference for identifying the mode parameters in the
ring-down oscillations in power systems. Commercially available
software [15] has built-in Prony analysis tools, which are used for
offline analysis. A major limitation of the Prony algorithm for
real-time applications is the difficulty of extracting the dominant
modes present in the signal among a large number of fictitious
modes produced by the algorithm [6, 16]. As shown in [16] some
of these fictitious modes may have poorer damping than the true
modes, where the true modes represent the actual dynamic
behaviour of the system. Therefore, it is important to separate the
true modes from the fictitious modes. This issue has been
addressed in the literature as explained below.

The energy of an oscillatory mode (Ei) can be calculated as,
Ei =

∑N−1
k=0 |xi k( )|2 over a data window having N samples.

Assuming that the dominant modes carry significant amounts of
energies, they can be extracted if their energies are above a
threshold value [16]. This threshold setting is difficult since, (i) the
total energy of the input signal does not equal the sum of the
energies of the individual modes, and (ii) when the input signal
has a dc component; it subsequently carries a significant amount
of energy. Another effort on extracting the true modes in the
Prony analysis is to process multiple inputs simultaneously as
proposed in [17]. This method is based on the assumption that an
oscillatory mode can appear in different power system variables
once the system is disturbed, hence the purpose is to determine a
one set of mode estimates from multiple inputs. This method
produces a large set of overdetermined equations to determine the
mode parameters, which can still produce fictitious modes. The
model reduction algorithm based on Akaike Information Criterion
[18] and the minimal realisation method based on the singular
value decomposition (SVD) algorithm [19] try to find the
reduced-order model for the input signal. Eventually, the
performance of each method is based on the closeness of the fit of
the reduced-order model for the actual input signal. Zhou et al.
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[16] used a stepwise regression which is an iterative procedure that
adds and removes terms from the linear model based on their
statistical significance in a regression to sort the dominant modes.
The authors claim that this method works well under low
signal-to-noise ratio (SNR) conditions. However, the damping
ratio estimations of the Prony algorithm are sensitive to the
presence of noise in the input signal.

The main contribution of this paper is to present a simple
technique to extract the dominant modes from the Prony algorithm
using a single input. The proposed algorithm is based on the
observation that the dominant modes, which are characteristics of
the power system, consistently appear in a measured response
irrespective of the order of the Prony model. Such modes can then
be extracted using a sorting method. Our simulation results show
that the proposed algorithm is well suited for real-time monitoring
of the small-signal rotor angle stability.

The rest of this paper is organised as follows. Theoretical
background of the Prony algorithm and the rationale behind the
modified algorithm are given in Section 2. Section 3 presents the
proposed oscillation monitoring algorithm. The sensitivities of
the proposed algorithm for different parameters are presented in
Section 4. Section 5 evaluates the performance of the proposed
algorithm. Finally, Section 6 presents the conclusions of the study.
2 Mathematical preliminaries

A brief review of the theory of Prony analysis is presented in Section
2.1 and the proposed algorithm is explained in Section 2.2.
2.1 Theory of Prony analysis

Prony analysis represents an input time-domain signal, Y(t) in the
form of Y t( ) = ∑p

i=1 Ai e
si tcos(2p fi t + wi), where p is the order of

the Prony model, fi and σi are the frequency and the real part of
the eigenvalue associated with the ith mode, respectively. Ai and
ji are the amplitude and the phase angle of the ith mode,
respectively. Theoretical derivations of this analysis are well
documented in the literature [6, 16, 17]. In summary, the analysis
involves the following steps:

(i) Construct a discrete linear prediction (LP) model that best fits
the recorded signal.
(ii) Find the roots of the characteristic polynomial associated with
the LP model and thereby the eigenvalues.
(iii) Determine the least-squares solution of the original set of
equations in order to determine the amplitude and the phase angle
of each mode.
Fig. 1 Digitised synthetic signal
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The performance of the Prony algorithm depends on the solution
for p number of unknowns using (N− p) number of equations in step
(ii) above, where N is the total number of samples over the data
window. In order to suppress the effect of noise, it is the usual
practice to over fit the input signal. For example, the order p of the
Prony model is selected as p≤ (N/3) [16]. Therefore, fictitious
modes are introduced into the calculation in addition to the true
modes present in the input signal. It is important to extract the true
modes from the fictitious modes for real-time applications.

2.2 Rationale behind the proposed algorithm

The waveform shown in Fig. 1 is a synthetically generated signal at a
known sampling rate. This signal consists of two oscillatory modes
at frequencies 0.5, 0.6 Hz and damping ratios 1.5, 1.6%. Consider
two data sets of the waveform; Y1 = [y0, y1, y2, …, yN]1×N and Y2
= [y0, y2, y4, …, yN] 1×(1+(N/2)), where yk is the value at the kth
sampling time. Note that the lengths of the two data sets are
different. Such different length data sets can be selected using two
approaches, (i) changes the data window length keeping the
sampling time fixed, and (ii) down-sample the data keeping the
data window length fixed. Coefficients of the two LP models
given in (1) and (2) can be determined using the Prony analysis as
explained in Section 2.1 on these two data sets. Note that the
orders of the two LP models p1 and p2 are different since the sizes
of the two data sets are different

Y1 � y1 k( )
= a1y1 k − 1( ) + a2y1 k − 2( ) + · · · + ap

1
y1 k − p1
( )

(1)

Y2 � y2 k( )
= b1y2 k − 1( ) + b2y2 k − 2( ) + · · · + bp

2
y2 k − p2
( )

(2)

These two LP models have the characteristic equations given in (3)
and (4), where the roots of the characteristic equations are the
discrete domain poles of the linear system

1( ) � z p1 − a1z
p
1
−1 − a2z

p
1
−2 − · · · − ap

1
−1z− ap

1

= (z− z11)(z− z12) · · · (z− z1 p
1
) (3)

2( ) � z p2 − b1z
p
2
−1 − b2z

p
2
−2 − · · · − bp

2
−1z− bp

2

= (z− z21)(z− z22) · · · (z− z2 p
2
) (4)

The number of roots in (3) and (4) are p1 and p2, respectively, where
p1≠ p2. However, these two characteristic equations represent an
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Fig. 2 Test linear system

Table 1 Test signal I parameters

Mode
no

Frequency,
Hz

Real part of the
eigenvalue

Damping ratio,
%

1 0.5 −0.0471 1.5
2 0.6 −0.0603 1.6
3 0.7 −0.5541 12.5

Table 2 Modes appearing in different length data windows

Window 1: 0–7 s Window 2: 0–8 s

Frequency,
Hz

Real part of
eigenvalue

Frequency,
Hz

Real part of
eigenvalue

0.5 −0.0471 0.5 −0.0471
0.6 −0.0603 0.6 −0.0603
0.7 −0.5541 0.7 −0.5541
1.4777 −0.5420 1.3763 −0.7802
1.9417 −0.6705 1.7855 −0.9865
2.3874 −0.7636 2.1781 −1.1396
2.8260 −0.8378 2.5643 −1.2634
3.2612 −0.8999 2.9471 −1.3681
3.6942 −0.9534 3.3280 −1.4589
4.1259 −1.0004 3.7077 −1.5393
4.5567 −1.0424 4.0864 −1.6114
4.9868 −1.0804 4.4645 −1.6767

4.8421 −1.7365
identical linear system having two oscillatory modes with the
parameters mentioned at the beginning of this section. Each
oscillatory mode is related with a pair of complex conjugate roots
in the characteristic equation. Therefore, theoretically there should
be four common roots in this case among p1 and p2. These roots
describe the true dynamic behaviour of the linear system and the
remaining roots [(p1− 4) in (3) and (p2− 4) in (4)] are the
fictitious roots produced by the linear fitting.

In order to illustrate the said theoretical explanation, consider the
system shown in Fig. 2, having three oscillatory modes with the
parameters mentioned in Table 1. This system was simulated in
MATLAB/SIMULINK using 60 samples/s sampling rate, which
adheres to the IEEE standard for synchrophasor measurements in
power systems [4]. Prony analysis was individually applied on the
output of this system using two data windows in lengths 7 and 8 s,
respectively. Table 2 shows the frequencies and the real parts of
the eigenvalues determined in these two cases. Only the modes
with frequencies less than 5 Hz are shown.

Table 2 shows that the consistently appearing modes (shown in
bold) in the two windows are the true modes of the input signal.
By selecting data windows of different lengths, the order of the LP
model used in the Prony algorithm is changed which impacts on
the fictitious modes, but not on the true modes of the input signal
as illustrated in Table 2.

The order of the linear fitting in the Prony analysis can also be
changed by changing the sampling time keeping the data window
length fixed. This approach is applicable when the PMU data are
available at a higher reporting rate. Annex C of [4] describes how
multiple rate outputs can be generated from the same PMU. An 8
s long data window of the above signal was analysed using 10, 15,
and 30 samples/s sampling rates. This analysis also showed that
the true modes of the input signal to appear consistently.

The core of the Prony analysis is a linear approximation to the
input signal as explained in this section. The rationale behind the
improved Prony algorithm is the observation that the true modes
present in the input signal appear consistently when the order of
the Prony models is varied. However, it is an inherent
characteristic of the power system to have additional modes
introduced by the non-linear mode interactions due to its dynamic
behaviour. These effects have been investigated in several
publications on normal form analysis [20, 21]. For example, if lk
and ll are two individual modes present in the linear system, the
same system exhibits combination modes (lk + ll) when it is
subjected to a large disturbance. It is illustrated in [21] that these
combination modes, e(lk+ll)t are more heavily damped than the
first-order modes, elkt or ellt. As a result, they do not appear in
multiple windows. Another point to note is that the highly-damped
first-order modes may also not appear in multiple windows. The
goal of the proposed algorithm is to identify the poorly-damped
low-frequency modes. The properties discussed above are helpful
in achieving this goal.
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2.3 Extracting true modes of the input signal

In this study, the Euclidean distances between individual modes in
the complex plane were compared to extract the consistently
appearing modes. Assume that p1 and p2 are the number of modes
identified by the Prony analysis using two data windows or
sampling steps as explained in Section 2.2. Thus, the true modes
can be extracted using the following logic:

if ,

���������������������������
fi − fj

( )2
+ si − sj

( )2√
≤ t i = 1, 2, . . . , p1

j = 1, 2, . . . , p2

f = fi + fj
2

s = si + sj

2

(5)

where t is the threshold assigned to identify the close modes, and f
and σ refer to the frequency and the real part of the eigenvalue of the
true mode.

2.4 Improved Prony algorithm

The procedure of the improved Prony algorithm is summarised
below:

(i) Specify the main data window length and the sampling time
step.
(ii) Change the order of the LP model used in the Prony analysis.
Two possible options for changing the order are as follows:
IET
† Reduce the length of the data window in intervals of 1 s
keeping the specified sampling time fixed. Multiple
sub-windows can be generated inside the main data window
via this approach. This is called the shrinking window
improved Prony algorithm.
† Change the sampling time keeping the data window length
fixed. This is called the multiple sampling time improved
Prony algorithm.
(iii) Apply the Prony analysis individually on each case. Extract
only the eigenvalues with positive frequencies less than 5 Hz.
(iv) Extract the true modes and determine their parameters as
explained in Section 2.3.

The complex eigenvalues always occur in conjugate pairs, where
each pair corresponds to a single oscillatory mode. Further, we are
interested in the low-frequency oscillatory modes. Hence, the
number of combinations to be checked to extract the true modes
can be reduced by selecting only the positive-frequency
eigenvalues with frequency less than 5 Hz. The improved Prony
algorithm that employs multiple sampling times can be applied
Gener. Transm. Distrib., 2015, Vol. 9, Iss. 15, pp. 2206–2214
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only when the PMU data are available at a higher reporting rate.
However, a PMU reporting rate of 10 samples/s is sufficient to
observe the inter-area modes. Thus the analyses presented in this
paper are based on the shrinking window improved Prony algorithm.
Fig. 4 Proposed oscillation monitoring algorithm
2.4 Implementation

The length of the main data window of the algorithm was selected as
four cycles of the dominant inter-area mode, as recommended in
[22]. In the cases where there is no idea about this frequency, it is
recommended to set the length of the first data window to be 10–
20 s assuming the lowest frequency as 0.2 Hz. The lengths of all
the subsequent data windows can be selected using the actual
frequency of the dominant mode determined by the algorithm. The
data are available at the recommended PMU reporting rates for the
application. These are 10, 12, 15, 20, 30, 60, 100, and 120
samples/s [4]. The sensitivities of the proposed algorithm to the
change in the data window length and the sampling rates are
analysed in Section 4.

The shrinking window algorithm is implemented as a block
processing algorithm as shown in Fig. 3. The order p of the Prony
model was selected as (N/3) as explained in Section 2.1. The
least-squares solution for the coefficients of the LP model was
determined using truncated SVD [19]. The truncation parameter
can be identified when the energy ratio (ER) value defined in (6)
is sufficiently close to unity

ER q
( ) =

∑q
i=1 a

2
i∑p

i=1 a
2
i

(6)

where αi is the ith singular value of the data matrix.
Fig. 3 Flowchart of the shrinking window improved Prony algorithm
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3 Proposed oscillation monitoring algorithm

The oscillation monitoring algorithm proposed in this paper is shown
in Fig. 4 and was implemented in MATLAB in the PC environment.
2209



The Prony algorithm works when there is a noticeable oscillation
in the data window [6]. Thus, it is important to apply the algorithm
into right data type. Subsequent to an onset of a ring-down
oscillation in the system, the energy of the measured signal in the
data window, Ek =

∑k+N−1
i=k |x i( )|2 dramatically changes compared

to the mean energy in the ambient operation [23]. This feature can
be used to detect the onset of a ring-down oscillation and hence to
initiate the improved Prony algorithm. In this study, the improved
Prony algorithm is initiated, if Ek is continuously changing and if
Ek≥ 1.05 × mean(E1: Ek−1) or Ek≤ 0.95 × mean(E1: Ek−1).

After identifying a ring-down condition, the measured signal is
sent through a low-pass filter which, (i) separates the
low-frequency oscillatory modes in the measured signal, (ii)
reduces the influence of the measurement noise on the mode
estimation, and (iii) enhances the true mode extraction capability
of the improved Prony algorithm under low SNR conditions. In
this study, the specifications used to design the filter were, (i) 2 Hz
pass-band corner frequency, (ii) 5 Hz stop-band corner frequency,
(iii) 0.2 dB ripple in the pass-band, and (iv) 20 dB ripple in the
stop-band. The attenuation levels used are same as those
recommended in [4] to improve the dynamic performance of the
PMU. A finite impulse response (FIR) filter was designed for this
application to meet the above specifications using the Hamming
window [24]. The FIR filters are considered to be efficient filters
due to their linear phase characteristics and are always stable [24].
The filter output signal is then processed by the improved Prony
algorithm as explained in Section 2.

The improved Prony algorithm determines whether the
oscillations present in the power system have adequate damping or
not. If the oscillatory modes are poorly-damped, the operator is
alerted to initiate the necessary control actions. If not the
ring-down oscillations will decay since all the oscillations have
adequate damping and the power system enters into an ambient
condition again. After concluding the oscillatory stability status,
the algorithm is reset to check for the occurrence of a ring-down
condition in the power system again. Therefore, the proposed
algorithm is continuously executing in the real-time environment.
4 Sensitivity analyses

This section presents the sensitivities of the shrinking window
improved Prony algorithm on different parameters using the
synthetic signal given in (7). The frequencies and the damping
ratios of the oscillations present in the signal are 0.25, 0.39 Hz and
7, 6.5%, respectively. This signal has been used in [16] to
Fig. 5 Synthetic signal and the low-pass filter output signal at different SNR level
signal
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illustrate the true mode extraction capability of the Prony
algorithm under noisy conditions using a stepwise regression
analysis.

x t( ) = 2e−0.1102t cos 1.5708t + 1.5p( )
+ 2e−0.1596t cos 2.4504t + 0.5p( ) + e t( )

(7)

Assume a time step of (1/120) s and 30 dB SNR. It is the usual
practice in power system literature to use a Monte Carlo method to
evaluate the performance of the mode identification algorithms
[14, 16]. The Monte Carlo method uses independent trials to
generate different instances of the random noise, ε(t). In this
study, 100 independent simulations were done in this regard.
Three measures were used to analyse the performance of the
algorithm. These three measures were (i) a number of trials in
which only the true modes were extracted (γ1), (ii) the number of
trials in which only one of the true modes was extracted (γ2), and
(iii) a number of trails in which the true modes and the fictitious
modes were extracted (γ3). If, γ1 + γ2 + γ3 < 100, none of the
modes were extracted in some trials.

In this case, the length of the data window for the Prony analysis
was specified in terms of the number of cycles of the 0.25 Hz mode.
The threshold used to extract the consistently appearing modes was
changed in steps of 0.01. It was found that a data window of length 3
or 4 cycles of the dominant low-frequency mode with two
sub-windows provide an acceptable mode extraction accuracy
when the threshold value lies between 0.01 and 0.03.

4.1 Sensitivity analysis with change in measurement
noise

To investigate the impact of the measurement noise on the mode
parameter estimations by the Prony algorithm, the input signal was
corrupted with measurement noise such that the SNR was 5, 10,
15, and 20 dB, respectively. A 16(=4/0.25) s long data window
with two sub-windows were used to extract the dominant modes.
Fig. 5 shows one instance of the synthetic signal at each SNR and
the low-pass filter output. Tables 3 and 4 show the true mode
extraction capability and the statistical significance of the
estimated mode parameters with respect to the true mode
parameters considering the 100 independent simulations.

The performance index γ1 represents the probability of extracting
only the true modes present in the input signal. As shown in Table 3,
this probability is above 90% when the threshold value is 0.01–0.03
s, blue curve indicates input signal, red curve indicates low-pass filter output
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Table 3 Sensitivity analysis of the shrinking window algorithm with
measurement noise

Noise level, dB Threshold γ1 γ2 γ3

5 0.01 89 8 0
0.02 98 0 2
0.03 91 0 9
0.04 82 0 18
0.05 70 0 30

10 0.01 99 1 0
0.02 95 0 5
0.03 90 0 10
0.04 81 0 19
0.05 76 0 24

15 0.01 100 0 0
0.02 97 0 3
0.03 91 0 9
0.04 86 0 14
0.05 79 0 21

20 0.01 100 0 0
0.02 98 0 2
0.03 93 0 7
0.04 89 0 11
0.05 79 0 21
under different SNR conditions. Furthermore, the sensitivity analysis
given in Section 4.3 with different sampling rates also illustrates that
this probability is above 90% when the threshold value is 0.02. The
interest in this study is to identify the low-frequency inter-area
oscillations (0.1–1 Hz) and this threshold is a value assigned for
the amount of deviation from the parameters of the true mode.
Therefore, based on the sensitivity analyses, it is recommended to
set the threshold value as 0.02 to sort the true low-frequency
modes. The validity of this threshold value is further demonstrated
in Section 5 using simulated cases of different test systems.

As shown in Table 4, the presence of measurement noise in the
input signal has not degraded the performance of the algorithm.
The deviations of the mode parameters even under noisy
conditions are less. This is because the input signal is first sent
through a low-pass filter. Thus, the filter output signal is less noise
contaminated as observed in Fig. 5.
Table 4 Statistical significance of the shrinking window algorithm with
measurement noise

Noise
level, dB

Mode
no.

Frequency,
Hz

std Real part of
eigenvalue

std

5 1 0.2475 0.0006 −0.1107 0.0043
2 0.3861 0.0011 −0.1595 0.0061

10 1 0.2500 0.0005 −0.1100 0.0030
2 0.3899 0.0009 −0.1597 0.0045

15 1 0.2500 0.0003 −0.1100 0.0015
2 0.3899 0.0005 −0.1598 0.0024

20 1 0.2500 0.0002 −0.1103 0.0009
2 0.3900 0.0002 −0.1596 0.0015

Table 5 Performance of the shrinking window algorithm with change in PMU

Reporting rate, fps γ1 γ2 γ3 Mode no Fr

10 94 0 6 1
2

12 92 1 7 1
2

15 96 0 4 1
2

20 96 0 4 1
2

30 92 0 8 1
2

60 95 0 5 1
2

100 95 0 5 1
2
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4.2 Sensitivity analysis with change in sampling rate

IEEE standard for synchrophasor measurements in power systems
[4] recommends 10, 12, 15, 20, 30, 60, 100, and 120 frames/s
(fps) sampling rates for a 60 Hz system. The input signal given in
(7) at 20 dB SNR was analysed using the oscillation monitoring
algorithm to investigate the effect of the PMU reporting rates on
the mode parameter estimation. A 16 s long data window with two
sub-windows was used and the threshold value used to extract the
dominant modes was 0.02. Table 5 summarises the results of the
analysis.

It can be seen that the standard deviations of the mode parameters
are very small ( < 10−2) indicating that their variations with the PMU
reporting rates are negligible for the purpose of real-time oscillation
monitoring. Thus, an adaptive sampling scheme as the one proposed
in [25] is not necessary to the Prony analysis to monitor the
low-frequency oscillations in real-time using synchronised data.
5 Results and discussion

This section evaluates the performance of the proposed oscillation
monitoring algorithm using two test systems. Following
specifications were used in the improved Prony algorithm; (a) 10
samples/s sampling rate, (b) two sub-windows inside the main data
window, (c) 0.02 threshold value, and (d) 100 independent
simulations. The standard deviations of the mode parameters in
each case were calculated with respect to the true mode parameters
determined by the eigenvalue analysis. Furthermore, the dc
component of the input signal was removed prior to applying the
improved Prony algorithm.

5.1 16-Generator 68-bus test system

The 16-generator 68-bus test system shown in Fig. 6 is a reduced
order equivalent of the interconnected New England test system
(NETS) and the New York power system (NYPS) [26]. This
system was simulated using the detailed generator model. Further,
all the generators were equipped with exciters and the generators
9, 13, and 16 were equipped with power system stabilisers. The
four inter-area modes identified using the small-signal stability
analysis are given in Table 6. The inter-area modes with
frequencies 0.52 and 0.70 Hz are the two poorly-damped modes.

Dynamic simulation of the system for a contingency of clearing a
solid three-phase bus fault at bus 18 after five cycles of the
fundamental frequency (60 Hz) was done using a transient stability
analysis tool (TSAT) [15]. The observability calculations reveal
that both of the poorly-damped modes are observable in the active
power flows along the tie lines connecting NETS and NYPS.
Fig. 7 shows the active power flow along one of the tie lines
connecting the buses 60 and 61. The fault was applied at time;
t = 5 s.

The measurement noise at 30 dB SNR was added to the simulated
signal and the data window length was set as four cycles of the 0.52
reporting rate

equency, Hz std Real part of eigenvalue std

0.2498 0.0007 −0.1107 0.0049
0.3900 0.0011 −0.1611 0.0073
0.2500 0.0006 −0.1102 0.0039
0.3901 0.0010 −0.1611 0.0065
0.2500 0.0005 −0.1107 0.0037
0.3901 0.0008 −0.1598 0.0055
0.2501 0.0004 −0.1106 0.0026
0.3899 0.0007 −0.1591 0.0043
0.2500 0.0003 −0.1100 0.0022
0.3900 0.0005 −0.1599 0.0036
0.2500 0.0002 −0.1106 0.0015
0.3900 0.0003 −0.1596 0.0018
0.2500 0.0002 −0.1102 0.0010
0.3899 0.0003 −0.1594 0.0016
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Fig. 6 16-Generator 68-bus test system

Fig. 7 Active power flow along lines 60–61 subsequent to a contingency

Table 6 Inter-area modes of the 16-generator 68-bus test system

Frequency,
Hz

Real part of
eigenvalue

Damping
ratio, %

Inter-area mode

0.41 −0.3349 12.89 group of generators in
NETS and NYPS against

generators in area 4
0.52 −0.0480 1.47 generator 14 against

generator 16
0.70 −0.0673 1.53 group of generators in

NETS against generator 16
0.79 −0.2206 4.44 generator 15 against

generator 14

2212
Hz mode. The event detection logic identified an onset of a
ring-down oscillation at time t = 5.59 s. Consider the two data
windows, 6.0–14.0 s and 20.6–28.6 s selected soon after and few
seconds later the contingency. The true mode extraction
capabilities over the two windows were, γ1 = 81, γ2 = 19, γ3 = 0
and γ1 = 97, γ2 = 0, γ3 = 3, respectively, where γ1, γ2, and γ3 are
the same as those defined in Section 4. Table 7 shows the
statistical significance of the mode parameters.

As shown in Table 7, the damping estimations may significantly
deviate when a data window soon after the contingency is used.
There are two possible reasons for this, (a) non-linearity of the
power system response soon after the application of the
disturbance [6], and (b) inability of the Prony algorithm to
IET Gener. Transm. Distrib., 2015, Vol. 9, Iss. 15, pp. 2206–2214
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Table 7 Mode parameter estimations: 16-generator 68-bus test system

Mode
no.

Parameter Data window: 6.0–
14.0 s

Data window: 20.6–
28.6 s

Mean
value

std Mean
value

std

1 fre., Hz 0.5205 0.0034 0.5216 0.0008
real part of
eigenvalue

−0.0101 0.0122 −0.0482 0.0008

2 fre., Hz 0.6989 0.0031 0.6994 0.0004
real part of
eigenvalue

−0.0743 0.0673 −0.0699 0.0034

Table 8 Mode parameter estimations: 50-generator 470-bus test system

Mode
no

Parameter Data window: 5.92–
15.92 s

Data window: 20.6–
30.6 s

Mean
value

std Mean
value

std

1 frequency, Hz 0.8223 0.0005 0.8223 0.0005
real part of
eigenvalue

−0.1528 0.0210 −0.1401 0.0082
accurately determine the mode damping when a poorly-damped
mode is superimposed with a highly-damped mode. It was shown
in Section 2.2 that the Prony algorithm correctly identifies the
mode parameters even under the situations where the input signal
consists of both highly-damped and lightly-damped modes.
Therefore, the reason ‘b’ above can be eliminated. Thus, it is
recommended to discard the initial damping estimations of the
algorithm before initiating any preventive control actions.
5.2 50-Generator 470-bus test system

The 50-generator 470-bus [27] test system has two areas with 14
thermal generators in area 1 and 23 thermal generators and 13
hydro generators in area 2. The system was modelled using
detailed generator models and exciters. The small-signal stability
analysis identified a poorly-damped inter-area mode at 0.823 Hz
frequency and 2.55% damping ratio between the two areas. The
speed of the generator 16 highly participates in this inter-area
mode. Dynamic simulation of the system was done using TSAT
software subsequent to a contingency of clearing a solid
three-phase bus fault applied at bus 16 after five cycles of the
fundamental frequency without any topology change in the
network. The fault was applied at time; t = 5 s. Fig. 8 shows
the active power injected by the generator 16 into the network.

The simulated signal was corrupted by 20 dB SNR. Assuming that
there is no prior knowledge about the frequency of the inter-area
mode, the data window length was set as 10 s as explained in
Section 2.4. The event detection logic identified an onset of a
ring-down oscillation at time, t = 5.33 s. Table 8 shows the
average values of the mode parameters over two data windows
selected just after and few seconds later the application of the
disturbance.

Table 8 also highlights that the damping estimation deviates from
the value obtained from the eigenvalue analysis when a data window
soon after the disturbance is processed. Further, among these two
data windows, the improved Prony algorithm extracted another
Fig. 8 Active power output of generator 16 subsequent to a contingency
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mode at 1.149 Hz and 5.4% in the first data window. The
eigenvalue analysis also showed an oscillatory mode at 1.142 Hz
and damping ratio of 5.32%. It can be also seen from Fig. 8 that a
single mode is dominating over the second data window 20.6–
30.6 s. Furthermore, among the 100 independent trials, the
algorithm extracted only the true mode in 99 trials in the first data
window and 92 trials in the second data window.
5.3 Discussion

In this study, the performance of the proposed oscillation monitoring
algorithm was investigated using a PC having an Intel Core i7
processor (3.40 GHz) with 8 GB RAM. The computational burden
of the algorithm was acceptable for updating the mode extraction
results at an interval of around half a second. Furthermore, it is
recommended to store the frequencies and the damping ratios of
the true modes calculated over a predetermined number of data
windows, say 3 and check the consistency of the parameters
before indicating to the operator. This consistency check would
further improve the accuracy of the conclusion. The actual PMU
measurements can also have missing data points as well as
abnormal data points. The problem of missing data points can be
eliminated by replacing them using interpolation as proposed in
[13, 14]. The presence of an abnormal data point is indicated by a
sudden spike in the ratio

|y k( ) − y k − 1( )|
Dt

,

where Δt is the sampling time. Now, replacement of the abnormal
data point y(k) by y(k− 1) enhances the performance of the
algorithm.

The main goal of this paper was to show that the proposed
improved Prony algorithm can be used for real-time monitoring of
the low-frequency oscillations. The conventional Prony algorithm
can also be applied on multiple measurements of the power system
to identify these oscillations. The application of the multisignal
Prony analysis in this regard has been investigated in [9, 17].
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However, this approach needs more offline analysis to identify which
multiple measurements to be used to determine the mode parameters.
For example, a series of empirical rules have been developed in [9]
for selecting the power system variables to monitor the
low-frequency oscillations. In contrast, the improved Prony
algorithm presented in this paper can be applied individually to
multiple signals measured at different locations. This is useful
when all the interested modes are not observable at a single
location. Furthermore, the improved Prony algorithm presented in
this paper can also be used in other applications, such as (i)
studying outputs of transient stability programs [6], and (ii) offline
analysis of field measured data [18].
6 Conclusions

It has been shown that the dominant low-frequency modes in
ring-down oscillations in power systems can be extracted using
Prony models with varying orders. In order to change the order of
the Prony model, a shrinking window approach and a multiple
sampling time approach have been proposed. This paper presented
an oscillation monitoring algorithm, including the improved Prony
algorithm to monitor the inter-area oscillations in real time. It has
been shown that the true mode parameters determined by the
algorithm are less sensitive to the amount of noise present in the
input signal and to the different PMU reporting rates
recommended by the IEEE standard for synchrophasor
measurements in power systems. The simplicity, true mode
extraction capability, accurate determination of the mode
parameters, and the acceptable computing time are the indicators
of the applicability of the proposed algorithm for wide-area
monitoring of power system oscillations.
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