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Abstract

In this paper we present an adaptive algorithm for distributed average consensus over a network of multi-agent
systems. The coupling parameters defining the strength of agents interactions are locally self-tuned by each node
based on the state information of its neighbors. Assuming that the underlying graph is connected, it is shown that
the sequence of coupling parameters generated by normalized gradient algorithm (NGA) is convergent, and the
agent states converge toward the average of the initial state values. Relation of the proposed method to
synchronization phenomenon is discussed. Simulation results illustrate effectiveness of the proposed method.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Emergence of a synchronized collective behavior in multi-agent systems is a topic of significant
interest in various fields of science and engineering. Focal point of study in multi-agent coordination is
understanding the consensus phenomenon where a number of autonomous agents reach a state of
agreement, or synchronize certain state dependent quantity of interest, without central direction. An
example of consensus phenomenon is the collective behavior in population of animals such as flocks,
herds and swarms. The interaction or information exchange among agents is specified by a consensus
algorithm, some times referred to as consensus protocol. Vicseck et al. [1] proposed a model where
each agent is moving in the plane with constant speed and the heading equal to the average of headings
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of its neighbors. Simulation results presented in [1] demonstrate that the alignment is achieved, and
asymptotically all agents move in the same direction. Mathematically rigorous explanation of the
phenomenon observed in the above paper is given in [2,3]. One of the first study of consensus problem
is presented in [4], where a model describing how a group might reach agreement on a common
probability distribution is considered. Among the first considerations of consensus concepts in systems
and control theory is distributed computation over networks [5], and asynchronous optimization
algorithms [6]. For the last twenty years there have been a huge proliferation of interesting results
covering variety of consensus related problems such as formation control, distributed optimization and
task assignment, coordination in flocks and swarms, sensor fusion, distributed estimation and control.
Many of those results consider issues of communication delay and presence of noise in exchanging
information between agents, time-varying network topologies, asynchronous updating of agent states,
and gossip algorithms. Since commenting on many important results in this area will take as much
space as the main body of this paper, we confine ourself to pointing out survey papers and several
monographs containing large amount of important references in this area. Large number of references
are given in [7–9] as well as in the recent books [10–14]. A fairly comprehensive review of the results
published since 2006 in control systems journals is given in [15], and its extended version [16] with
over 300 references.

A separate track of large amount of contributions on emergence of spontaneous order in
networked systems pursued not exclusively but mainly by the physicists' community is related to
synchronizations phenomenon. Synchronization is an intriguing concept ubiquitous in
biological, chemical, physical and social systems. Winfree [17] assumed that the coherent
cooperative action can be modeled by a collection of interactive oscillatory agents. To model
synchronization of biological clocks he proposed to use a population of interacting limit-cycle
oscillators. Building on Winfree's work, Kuramoto [18] analytically studied conditions for
spontaneous frequency synchronization of a group of phase coupled oscillators. Large number of
references with impressive results on the subject of synchronization in oscillator networks can be
found in recent surveys [19–21].

In this paper we consider the problem of adaptively tuning inter-agent coupling parameters so that
the reached consensus value is equal to the average of initial conditions, hence the name average
consensus. We analyze networked systems with identical dynamics represented by a discrete time
integrator with unknown scalar parameter. Each agent locally tunes the coupling parameters so that the
square of the error between agent state and the average of the states of its neighbors is minimized.
Assuming that the underlying network graph is connected, it is proved that with the proposed self-
tuning rule all agent states converge towards the same value equal to the average of the initial state
values. We also show that in the special case of all-to-all coupling, average consensus can be achieved
with a simple interacting function proportional to the error between respective agent state and the
average of states of the rest of agents. In addition we discuss how the problem of frequency
synchronization fits within the proposed self-tuning average consensus scheme.

The paper is organized as follows. Problem statement is given in Section 2. Global stability of
self-tuning consensus is given in Section 3. Section 4 discusses relation of self-tuning consensus
to Kuramoto synchronization. Simulation experiments are presented in Section 5.

Notation: The following notation is used throughout the paper:
�
 The abbreviation RHS means “right-hand side”.

�
 R denotes the set of real numbers.

�
 The space of n-dimensional vectors with real elements is denoted by Rn.

�
 The superscript T denotes the transpose of a matrix.
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�
 I represents the identity matrix.

�
 ρðAÞ denotes the spectral radius of a matrix A.

�
 In this paper ℓ is used to denote a vector with all entries equal to one, i.e., ℓT ¼ ð1; 1;…; 1Þ.

�
 When performing majorizations and in certain upper bounds, we use ci, i¼1,2,… to denote

nonnegative constants whose values are unimportant.

�
 JxJ denotes Euclidean norm of a vector x, and sgn(y) denotes the sign of a real number y.

�
 In this paper matrices are denoted by upper case boldface letters, and vectors are denoted by

lower case boldface letters.

2. Problem formulation

Consider a group of N agents described by a discrete time dynamics given by

xiðt þ 1Þ ¼ xiðtÞ þ βðtÞuiðtÞ; xið0Þ ¼ xi0 ; i¼ 1;…;N ð1Þ
where time index tAf0; 1; 2;…g, xið0ÞAR, and uiðtÞAR are the state and control signal of agent
i at time t, respectively, xi0 AR, 1r irN are initial states, while βðtÞ is the unknown input gain.
The communication topology of the above network of agents can be modeled by an undirected
graph G¼ ðV;EÞ with the set of nodes V¼ f1; 2;…;Ng and the set of edges or communication
links EDV� V. The node i represents the agent i, and the ordered pairs (i, j), ia j denote edges
where ði; jÞAE, if and only if the i-th agent can directly receive information from the j-th agent.
For undirected graph, if ði; jÞAE then ðj; iÞAE. The set of neighbors of node i is denoted by
N i ¼ f jAVjði; jÞAEg.
Model (1) can be viewed as a discrete time version of a group of identical continuous time

agents whose dynamics is

_xi τð Þ ¼ 1
m
ui τð Þ; xi 0ð Þ ¼ xi0;

where m is the mass, uiðτÞ is the external force driving the motion of the i-th agent, and xiðτÞ is its
velocity. Such model can be of interest in analyzing flock behavior or considering the problem of
achieving common velocity in a formation of unmanned aerial vehicles. In this case due to the fuel
consumption during flight, mass m can be a slowly time-varying quantity. The parameter βðtÞ in Eq.
(1) can be interpreted as the inverse of mass m. Another situation where model (1) is of interest is the
rendezvous problem with the objective for all vehicles to meet at a common location using only
relative position information [10,11]. The dynamics of the i-th vehicle can be described by a simple
discrete-time model given by Eq. (1). In this case the input gain βðtÞ can be taken to be a constant,
βðtÞ ¼ β. Due to uncertainties in the control actuator dynamics, β can be considered an unknown
parameter.
Each agent generates control sequence fuiðtÞg so that all state variables asymptotically reach an

agreement, i.e., limt-1xiðtÞ ¼ xc, iAV, for some xcAR. We then say that the network of agents
has reached consensus, and refer to xc as the consensus value. Normally ui(t) is a function of the
i-th agent state and the states of its neighbors. The network theory literature often refers to ui(t) as
the consensus protocol. If xc ¼ ð1=NÞPN

i ¼ 1 xið0Þ, we say that the network achieves average
consensus. In this paper we consider the following protocol:

uiðtÞ ¼
X
jAN i

θijðtÞðxjðtÞ�xiðtÞÞ; iAV ð2Þ
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where θijðtÞAR are interagent coupling parameters to be determined so that the agent states
achieve average consensus. Note that the control signal given in Eq. (2) can be written in the
form

uiðtÞ ¼ θiðtÞTφiðtÞ; iAV ð3Þ
where

θiðtÞT ¼ θi1I i1;…; θiNI iN½ � ð4Þ
and

φiðtÞT ¼ ϵi1;…; ϵiN½ � ð5Þ
where ϵijðtÞ ¼ xjðtÞ�xiðtÞ

� �I ij, and I ij is an indicator function given by I ij ¼ 1 if jAN i, and
I ij ¼ 0 if j=2N i. After substituting Eq. (3) in Eq. (1) we derive

xiðt þ 1Þ ¼ xiðtÞ þ βðtÞθiðtÞTφiðtÞ; iAV: ð6Þ
Define

xðtÞT ¼ x1ðtÞ;…:; xNðtÞ½ �: ð7Þ
Then Eq. (6) can be written in the compact form

xðt þ 1Þ ¼WðtÞxðtÞ ð8Þ
where WðtÞ is an N�N matrix given by

WðtÞ ¼ wijðtÞ
� �

; wijðtÞ ¼
βðtÞθijðtÞ; jAN i

1�βðtÞ P
jAN i

θijðtÞ; j¼ i

0 otherwise:

8>><
>>: ð9Þ

It is well-known that the condition for the iteration in Eq. (8) to converge to the average of
initial states is ℓT ¼ ð1;…; 1Þ to be left and right eigenvector of WðtÞ corresponding to the
eigenvalue λ1 ¼ 1, i.e.,

ℓTWðtÞ ¼ ℓT and WðtÞℓ¼ ℓ: ð10Þ
Then, the sum of the states is time invariant, i.e. ℓTxðt þ 1Þ ¼ ℓTxðtÞ ¼⋯¼ ℓTxð0Þ, and ℓ (or
scalar multiple of it) is a fixed point of the recursion defined by Eq. (8).

In this paper we satisfy conditions given in Eq. (10) by generating symmetric matrix WðtÞ,
tZ0. Each agent tunes its parameter vector θiðtÞ by minimizing the following cost function:

Ji θið Þ ¼ 1
2 xiðt þ 1Þ�xiðt þ 1Þð Þ2; iAV ð11Þ

where xiðt þ 1Þ represents the average of the i-th agent neighbors states including its own state,

xi t þ 1ð Þ ¼ 1
1þ Ni

X
jAN 0

i

xj tð Þ; N 0
i ¼N i [ if g ð12Þ

where Ni denotes cardinality of the set N i (number of elements in N i).
Since from Eq. (6), ∂xiðt þ 1Þ=∂θiðtÞ ¼ βðtÞφiðtÞ, gradient based minimization of the cost

function given in Eq. (11) suggests the following updating rule for θiðtÞ:
θiðt þ 1Þ ¼ θiðtÞ�βðtÞφiðtÞeiðt þ 1Þ ð13Þ
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where

eiðt þ 1Þ ¼ xiðt þ 1Þ�xiðt þ 1Þ: ð14Þ
Since βðtÞ is an unknown parameter, instead of Eq. (13), we use the following “normalized
gradient” algorithm. Define

θ0iðtÞT ¼ ½θ0i1I i1;…; θ0iNI iN �; i¼ 1;…;N:

Then the following scheme can be used to generate θiðtÞ, iAV ,

θ0i t þ 1ð Þ ¼ θi tð Þ�
μi
riðtÞ

sgn β tð Þð Þφi tð Þei t þ 1ð Þ; iAV ð15Þ

θij tð Þ ¼ 1
2 θ0ijðtÞI ij þ θ0jiðtÞI ji

� �
; jAN i; ð16Þ

where θijðtÞ are components of the vector θiðtÞ defined by Eq. (4), μi40 is the algorithm step
size, and

riðtÞ ¼ 1þ JφiðtÞJ 2: ð17Þ
In order to assure that θiðtÞ will be updated in the direction of the negative gradient of the cost
function (11), in Eq. (15) it is assumed that the sign of βðtÞ is known.
Note that the above algorithm generates the coupling parameter vector θiðtÞ in two steps. First

Eq. (15) gives θ0iðtÞ, iAV . Then according to Eq. (16) the components θijðtÞ of θiðtÞ are obtained
by averaging respective elements of θ0iðtÞ and θ0jðtÞ, 8 jAN i, i¼ 1;…;N. Observe that Eq. (16)
guarantees that θjiðtÞ ¼ θijðtÞ, for all ia j. In other words WðtÞ in Eq. (8) is a symmetric matrix.
Eq. (16) assumes that besides respective states xi(t) and xj(t), agents i and j exchange parameter
values θ0ijðtÞ and θ0jiðtÞ as well. Iteration (15) starts with arbitrary initial conditions θijð0Þ and
θjið0Þ. The role of gradient normalizer ri(t) will become clear later when we consider global
stability of the algorithm given by Eqs. (15)–(17).
From Eq. (15) it can be seen that θijðtÞ is a function of fxiðk þ 1Þg, 1rkr t, and fxjðkÞg,

1rkr t, jAN i. Also from Eqs. (1) and (2) it follows that xiðt þ 1Þ is a function of
θijðkÞ; 0rkr t. Thus there is a highly nonlinear interplay between sequences fθijðtÞg and fxiðtÞg
implying that the interaction among agents is not a linear function.
We now comment on distributed nature of the proposed algorithm. From Eq. (2) it is obvious

that each agent generates its control signal ui(t), iAV by using only states of its neighbors, i.e.,
states xj(t), jAN i. Also from Eqs. (15) and (16) it is clear that the i-th agent generates coupling
parameters θijðtÞ (used in Eq. (2)) by using only variables obtained from its neighbors jAN i.
Therefore each agent is running its own local algorithm based on information available only from
respective neighbors, without central coordination.

3. Global stability and convergence of the self-tuning consensus

We now examine stability and convergence of the multi-agent system defined by Eq. (6), and
the accompanying algorithm given by Eqs. (15)–(17). For the sake of clarity, and in order to
avoid tedious and cumbersome algebra, we will analyze the case of constant βðtÞ, i.e., in Eq. (1)
we set βðtÞ ¼ β for all tZ0. The case of time-varying βðtÞ will be analyzed in the follow up
paper. In this section we show that the algorithm defined by Eqs. (15)–(17) along with the system
dynamics given by Eq. (6) is globally stable in the sense that sequences feiðtÞg and fφiðtÞg, tZ0,
iAV, have finite total energies, the sequence fθikðtÞg, tZ0, i; kAV, iak, is convergent as
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t-1, and all states xi(t) converge towards the same consensus value equal to the average of the
initial states xið0Þ, i¼ 1;…;N. By global we mean that all of the above claims hold for all initial
conditions xið0Þ, and θijð0Þ, i; jAV. The above propositions are proved by assuming the
following.

Assumption 1. The underlying network graph is connected.

Assumption 2. The sign of parameter β in Eq. (1), and the upper bound βmax of jβj are known
for each agent. The step size μi in Eq. (15) satisfies μio2=βmax, for all iAV.

Define

eðtÞT ¼ ½e1ðtÞ;…:; eNðtÞ�; ð18Þ
and

ϕiðtÞ ¼ xðtÞ�xiðtÞℓ; iAV: ð19Þ
The following lemma is useful for future reference.

Lemma 1. Let Assumption 1 hold. Then for all i¼ 1;…;N,Xn
t ¼ 0

Jϕiðt þ 1ÞJ2rc1 þ c2
Xn
t ¼ 0

Jeðt þ 1ÞJ2; 8nZ0 ð20Þ

where eðtÞ is defined by Eq. (18), ϕiðtÞ is defined by Eq. (19), while c1 and c2 are positive
constants.

Proof. Note that xiðt þ 1Þ given by Eq. (12) can be written in the form

xiðt þ 1Þ ¼ aTi xðtÞ ð21Þ
where xðtÞ is the state vector defined by Eq. (7), and

aTi ¼ ai1;…; aiN½ �; aij ¼
1

1þ Ni
; j¼ i and jAN i;

0 otherwise:

8<
: ð22Þ

Then from Eqs. (14), (21), and (22), we have

xðt þ 1Þ ¼AxðtÞ þ eðt þ 1Þ; ð23Þ
where A is an N�N matrix given by A¼ ½aij�, with elements aij defined by Eq. (22). Since

Aℓ¼ ℓ; ℓT ¼ ð1; 1;…; 1Þ ð24Þ
it follows that λ1 ¼ 1 is an eigenvalue of A with the corresponding right eigenvector equal to ℓ.
Since A is a stochastic matrix, λ1 ¼ 1 is its maximal eigenvalue [22, p. 83]. By virtue of the fact
that G is a connected graph, the nonnegative matrix A is irreducible (see for example [23,
theorem 6.2.24, p. 362]) implying that λ1 ¼ 1 is an algebraically simple eigenvalue of A (see [23,
theorem 8.4.4, p. 508]). Thus A is a primitive matrix. Consequently, except λ1 ¼ 1, the rest of the
eigenvalues λi of the matrix A satisfy the condition jλijo1, i¼ 2;…;N. Let y be the left
eigenvector of A associated to λ1, and normalized so that yTℓ¼ 1.

Based on this discussion we can decompose the matrix A as follows:

A¼A1 þ ℓyT ; ℓTy¼ 1 ð25Þ
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where all eigenvalues of A1 are inside the unit circle, i.e., the spectral radius of A1 satisfies
ρðA1Þo1. Hence from Eq. (23), one can obtain

xðt þ 1Þ ¼A1xðtÞ þ ℓyTxðtÞ þ eðt þ 1Þ ð26Þ
or

xðt þ 1Þ ¼Hðq�1Þ ℓyTxðtÞ þ eðt þ 1Þ� � ð27Þ
where

Hðq�1Þ ¼ ðI�q�1A1Þ�1 ð28Þ
and q�1 is the unit delay operator, i.e., q�1xðt þ 1Þ ¼ xðtÞ. Since from Eqs. (24) and (25),
A1ℓ¼ 0, we have Hðq�1Þℓ¼ ðIþP1

k ¼ 1 q
� kAk

1Þℓ¼ ℓ. Then Eq. (27) gives

xðt þ 1Þ ¼ ℓyTxðtÞ þHðq�1Þeðt þ 1Þ: ð29Þ
From Eqs. (29) and (19) we can derive

ϕiðt þ 1Þ ¼ ℓyTxðtÞ þHðq�1Þeðt þ 1Þ�ℓxiðt þ 1Þ ð30Þ
or

ϕiðt þ 1Þ ¼ ℓyT ðxðtÞ�ℓxiðtÞÞ þ ℓyTℓxiðtÞ�ℓxiðt þ 1Þ þHðq�1Þeðt þ 1Þ: ð31Þ
Since yTℓ¼ 1, we have

ϕiðt þ 1Þ ¼ ℓyTϕiðtÞ þ ℓ xiðtÞ�xiðt þ 1Þ½ � þHðq�1Þeðt þ 1Þ: ð32Þ
Observe that Eq. (12) can be written as

xiðt þ 1Þ ¼ xiðtÞ þ bTi ϕiðtÞ ð33Þ
where bi is defined as follows:

bTi ¼ bi1;…; biN½ �; bij ¼
1

1þ Ni
; jAN i

0 otherwise:

8<
: ð34Þ

Then the error eiðt þ 1Þ given by Eq. (14) can be expressed as

eiðt þ 1Þ ¼ xiðt þ 1Þ�xiðtÞ�bTi ϕiðtÞ: ð35Þ
Define the following matrix:

Qi ¼ ℓðy�biÞT : ð36Þ
Then by using Eq. (35) in the second term on the RHS of Eq. (32) one can obtain

ϕiðt þ 1Þ ¼QiϕiðtÞ�ℓeiðt þ 1Þ þHðq�1Þeðt þ 1Þ; ð37Þ
from where it follows that

ϕiðt þ 1Þ ¼Qt
iϕið0Þ þ

Xt
k ¼ 0

Qt� k
i ½Hðq�1Þeðk þ 1Þ�ℓeiðk þ 1Þ�: ð38Þ

Note that the matrix Qi in Eq. (36) is of rank 1 and its only nonzero eigenvalue is

ρ1 ¼ ℓT y�bið Þ ¼ 1�ℓTbi ¼ 1�
XN
k ¼ 1

bik ¼ 1� Ni

1þ Ni
o1:
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Hence, there exists a positive constant c3 such that JQk
i Jrc3ρk1; 0oρ1o1, for all kZ0 [24,

p. 174]. Then from Eq. (38) it follows that for some positive constants c4 and c5,

Jϕiðt þ 1ÞJ2rc4ρ
k
1 þ c5

Xt
k ¼ 0

ρt� k
1 Jeðk þ 1ÞJ2; ð39Þ

where we used the fact that Hðq�1Þ is a stable operator, and ei(t) is absorbed by eðtÞ. We say that
the operator Hðq�1Þ given by Eq. (28) is stable if the corresponding transfer function
Hðz�1Þ ¼ ðI�z�1A1Þ�1 is stable, where z is a complex variable. The transfer function Hðz�1Þ is
stable by virtue of the fact that ρðA1Þo1, i.e., all eigenvalues of A1 are strictly inside the unit
circle.

Summing up both sides of Eq. (39) from t¼0 to t¼n yields Eq. (20). □

Next we can formulate global stability results.

Theorem 1. Let Assumptions A1 and A2 hold. Then there exist some positive constants c6 and c7
so that for all finite initial conditions xið0Þ and θijð0Þ, 1r i; jrN, the multi-agent system given
by Eq. (6) and the parameter estimation algorithm defined by Eqs. (15)–(17) provide

ð1Þ
Xn
t ¼ 0

Jeðt þ 1ÞJ2rc6o1; nZ0; ð40Þ

ð2Þ
Xn
t ¼ 0

JϕiðtÞJ 2rc7o1; 8 iAV ð41Þ

for all nZ0;where the vector ϕi tð Þ is defined by Eq: 19ð Þ:
3ð Þ lim

t-1
θi tð Þ exists; 8 iAV

4ð Þ All agents converge toward the average of initial state values xi 0ð Þ; i:e:;
lim
t-1

xi tð Þ ¼
ℓTxð0Þ

N
; iAV ð42Þ

where ℓ is the vector with all elements equal to one.

Proof. We first express the error eiðt þ 1Þ ¼ xiðt þ 1Þ�xiðt þ 1Þ in terms of the following
parameter error:

~θiðtÞ ¼ βθiðtÞ�bi ð43Þ
where the vectors bi are defined in Eq. (34). Note that Eq. (12) can be written in the form

xiðt þ 1Þ ¼ xiðtÞ þ bTi φiðtÞ ð44Þ
where φiðtÞ is defined by Eq. (5). Then it is not difficult to see that from Eqs. (6), (14), (43), and
(44), we can obtain

eiðt þ 1Þ ¼ ~θ
T
i φiðtÞ: ð45Þ

The parameter errors ~θiðtÞ are in effect governed by the recursion given by Eq. (15). In light of
definitions given by Eqs. (4), (5), and (43), from Eq. (15), we can write the following recursion
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for each component of ~θiðtÞ:
~θ
0
ij t þ 1ð ÞI ij ¼ ~θ ij tð ÞI ij�

μi
riðtÞ

β ϵij tð Þei t þ 1ð Þ
���� ð46Þ

where ~θ
0
ij ¼ βθ0ijðt þ 1Þ�bij; jAN i. After squaring both sides of Eq. (46) it follows that

~θ
0
ijðt þ 1Þ2I ij ¼ ~θ

2
ijI ij�

2μi
riðtÞ

jβj ~θ ij tð Þϵij tð ÞI ijei t þ 1ð Þ þ μ2i β
2

riðtÞ2
ϵijðtÞ2eijðtÞ2; ð47Þ

for all iAV, jAN i. Since Eq. (16) implies

~θ ijðt þ 1Þ2r1
2

~θ
0
ijðt þ 1Þ2 þ ~θ

0
jiðt þ 1Þ2

� �
;

from Eq. (47) one can derive

~θ ijðt þ 1Þ2I ijr
1
2

~θ ijðtÞ2I ij þ ~θ jiðtÞ2I ji

� �
� μijβj

riðtÞ
~θ ij tð Þϵij tð ÞI ijei t þ 1ð Þ� μjjβj

rjðtÞ
~θ ji tð Þϵji tð ÞI jiej t þ 1ð Þ

þ μ2i β
2

2riðtÞ2
ϵijðtÞ2eiðt þ 1Þ2 þ μ2j β

2

2rjðtÞ2
ϵjiðtÞ2ejðt þ 1Þ2: ð48Þ

Define

vðtÞ ¼
XN
i ¼ 1

J ~θiðtÞJ2: ð49Þ

Then by virtue of the fact that ~θ ijðtÞ ¼ ~θ jiðtÞ, and by Eq. (4), J ~θiðtÞJ 2 ¼
PN

i ¼ 1
~θ ijðtÞ2I ij, from

Eq. (48) we can obtain

v t þ 1ð Þrv tð Þ�jβj
XN
i ¼ 1

μi
riðtÞ

ei t þ 1ð Þ
XN
j ¼ 1

~θ ij tð Þϵij tð ÞI ij

�jβj
XN
j ¼ 1

μj
rjðtÞ

ej t þ 1ð Þ
XN
i ¼ 1

~θ ji tð Þϵji tð ÞI ji

þ β2

2

XN
i ¼ 1

μ2i
riðtÞ2

eiðt þ 1Þ2
XN
j ¼ 1

ϵijðtÞ2

þ β2

2

XN
j ¼ 1

μ2j
rjðtÞ2

ejðt þ 1Þ2
XN
i ¼ 1

ϵjiðtÞ2: ð50Þ

Observe that Eqs. (4) and (5) imply
PN

j ¼ 1
~θ ijðtÞϵijI ij ¼ ~θiðtÞTφiðtÞ which together with Eq. (45)

yields

XN
j ¼ 1

~θ ijðtÞϵijðtÞI ij ¼ eiðt þ 1Þ; i¼ 1;…;N: ð51Þ

By using Eq. (51) in Eq. (50) it follows that

v t þ 1ð Þrv tð Þ�2jβj
XN
i ¼ 1

μi
riðtÞ

eiðt þ 1Þ2 þ
XN
i ¼ 1

ðμiβÞ2
riðtÞ

JφiðtÞJ 2
riðtÞ

eiðt þ 1Þ2 ð52Þ
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where we used the fact that from Eq. (5),
PN

j ¼ 1 ϵijðtÞ2 ¼ JφiðtÞJ 2. Since by definition of ri(t)
(see Eq. (17)), JφiðtÞJ 2=riðtÞ

� �
r1, the third term on the RHS of Eq. (52) can be overbounded

by
PN

i ¼ 1 ðμiβÞ2eiðt þ 1Þ2=riðtÞ. Hence, from relation (52) we obtain

v t þ 1ð Þrv tð Þ�2
XN
i ¼ 1

μijβj 1� μijβj
2

	 

eiðt þ 1Þ2

riðtÞ
: ð53Þ

Summing up both sides of Eq. (53) from t¼0 to t¼n gives

v nþ 1ð Þrv 0ð Þ�2
Xn
t ¼ 0

XN
i ¼ 1

μijβj 1� μijβj
2

	 

eiðt þ 1Þ2

riðtÞ
: ð54Þ

Since by Assumption 2, the step size μi satisfies 1�ðμijβj=2ÞZ0, inequality (54) implies

XN
i ¼ 1

Xn
t ¼ 0

eiðt þ 1Þ2
riðtÞ

rK1o1; ð55Þ

for some positive constant K1 dependent on vð0Þ, jβj and μi, i¼ 1;…;N: Define

rðtÞ ¼ 1þ
XN
i ¼ 1

Xt
k ¼ 1

JφiðkÞJ 2; ð56Þ

where φiðkÞ is defined by Eq. (5). Since Jeðt þ 1ÞJ2 ¼ PN
i ¼ 1 eiðt þ 1Þ2, and using the fact that

by Eqs. (17) and (56), rðtÞZriðtÞ for i¼ 1;…;N, relation (55) impliesXn
t ¼ 0

jjeðt þ 1Þjj2
rðtÞ rK1o1: ð57Þ

Next we analyze rðnÞ, the denominator in Eq. (57). Since from Eqs. (5) and (19),
JφiðtÞJr JϕiðtÞJ ; 8 tZ0, Eq. (17) gives riðtÞr1þ JϕiðtÞJ2. Then relations (20) and (56)
imply that for some positive constants c8 and c9,

rðnÞr1þ
Xn
t ¼ 0

XN
i ¼ 1

JϕiðtÞJ 2rc8 þ c9
Xn
t ¼ 0

Jeðt þ 1ÞJ2; ð58Þ

which together with Eq. (57) givesXn
t ¼ 0

Jeðt þ 1ÞJ2
c8 þ c9

Pt
m ¼ 0 Jeðmþ 1ÞJ 2 rK1o1; ð59Þ

for all nZ0. We now demonstrate by contradiction that
Pt

m ¼ 0 Jeðmþ 1ÞJ2 is bounded for all
tZ0. Assume that

Pt
m ¼ 0 Jeðmþ 1ÞJ 2-1 as t-1. Then by Kronecker's Lemma (for

convenience it is given in the Appendix) from Eq. (59), one can derive

lim
n-1

Xn
t ¼ 0

eðt þ 1Þ2
 !

c8 þ c9
Xn
t ¼ 0

Jeðt þ 1ÞJ2
 !

¼ 0;

,
ð60Þ

for some positive constants c8 and c9. Statement 1 of this theorem directly follows from the last
equation. Relation (41) is a consequence of Eq. (40) and Lemma 1. We now prove that the
parameter sequence fθijðtÞg, tZ0, 1r i; jrN, has a limit. From Eqs. (16) and (46), we can write

~θ ij t þ 1ð ÞI ij ¼
1
2

~θ
0
ij t þ 1ð Þ þ ~θ

0
ji t þ 1ð Þ

h i
I ij ¼ ~θ ij tð ÞI ij
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� 1
2
jβj μi

riðtÞ
ϵij tð Þei t þ 1ð Þ þ μj

rjðtÞ
ϵji tð Þej t þ 1ð Þ

� �
: ð61Þ

After summing both sides of Eq. (61) from t¼0 to t¼n, it follows that

~θ ij t þ 1ð ÞI ij ¼ ~θ ij 0ð ÞI ij� 1
2
jβj
Xn
t ¼ 0

μi
riðtÞ

ϵij tð Þei t þ 1ð Þ þ μj
rjðtÞ

ϵji tð Þej t þ 1ð Þ
� �

: ð62Þ

Consider now an infinite series Rij defined by

Rij ¼
X1
t ¼ 0

ϵijðtÞeiðt þ 1Þ
riðtÞ

: ð63Þ

Since by Eqs. (5) and (19), jϵijðtÞjr JφiðtÞJr JϕiðtÞJ , we have

X1
t ¼ 0

��� ϵijðtÞeiðt þ 1Þ
riðtÞ

���rX1
t ¼ 0

Jϕi tð ÞJ jei t þ 1ð Þj; ð64Þ

where we used the fact that by Eq. (17), riðtÞZ1. Then from Eqs. (63), (64), and Cauchy–
Schwartz's inequality, it follows that

jRijjr
X1
t ¼ 0

JϕiðtÞJ 2
 !1=2 Xn

t ¼ 0

eiðt þ 1Þ2
 !1=2

rc10o1 ð65Þ

for 1r i; jrN. Thus the infinite series Rij is absolutely convergent. Hence, Eq. (62) implies that
limn-1 ~θ ijðnÞ exists. It is left to prove the statement in Eq. (42) of the theorem. Since by
construction (see Eq. (16)) matrixWðtÞ given by Eq. (9) is symmetric, it is not difficult to see that
WðtÞℓ¼ ℓ, and ℓTWðtÞ ¼ ℓT , 8 tZ0, where ℓT ¼ ð1;…; 1Þ. Then from Eq. (8) it follows that
the sum of initial states xið0Þ, i¼ 1;…;N is time invariant, i.e.,

ℓTxðt þ 1Þ ¼ ℓTxðtÞ ¼⋯¼ ℓTxð0Þ: ð66Þ
On the other hand the definition in Eq. (19) and the statement (41) give limt-1ðxðtÞ�
xiðtÞℓÞ ¼ 0, or

lim
t-1

ℓTxðtÞ�xiðtÞℓTℓ
� �¼ 0; iAV: ð67Þ

Since ℓTℓ¼ N, Eqs. (66) and (67) imply that limt-1xiðtÞ ¼ ð1=NÞℓTxð0Þ, i¼ 1;…;N. Thus the
theorem is proved. □

Let us comment on the role of normalizer ri(t) in Eq. (15). Assume for a moment that instead
of Eq. (17), ri(t) is equal to one. Then if at some time instant JφiðtÞJ2 becomes too large, the
third term on the RHS of Eq. (52) can dominate the second term, and vðt þ 1Þ may not be non-
increasing function of time t. In combination with appropriate choice of the step size μi, the
normalizer ri(t) guarantees that the second term on the RHS of Eq. (52) is larger than the third
term, and thus vðt þ 1ÞrvðtÞ for all tZ0 (see relation (53)).

Remark 1. In Eq. (15) we assumed that the sign of parameter β is known. This parameter
represents the input gain, often referred to as the high-frequency gain of agent dynamics.
Similarly as in the case of adaptive control systems, it is not uncommon to assume that the sign
of β is a priory knowledge available to the designer (see for example [25, p. 193], or [26,
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p. 332]). In case of a previously mentioned kinematic model _xiðτÞ ¼ ð1=mÞuiðτÞ, parameter β is
equal to ð1=mÞ where m is the mass. Obviously we can assume that sgnð1=mÞ40.

Remark 2. For simplicity of presentation, in the previous proof we assumed that parameter β is
a constant. The case of time-varying β can be analyzed by using techniques similar to [27] which
is different than the analysis presented in this paper. In general, statements (40) and (41) cannot
be derived in the case of time-varying β. For example if we assume that jβðtÞ�βðt�1Þjrα, and
jβðtÞjrβmaxo1, 8 tZ1, then instead of Eqs. (40) and (41) it would be possible to demonstrate
that

lim sup
n-1

1
n

Xn
t ¼ 0

Je t þ 1ð ÞJ2rc11α
2

and

lim sup
n-1

1
n

Xn
t ¼ 0

Jϕi tð ÞJ2rc12α
2

for some positive constants c11 and c12. The case of time-varying β is a future research topic by
the authors.

Remark 3. It is of interest to investigate if it is possible to extend the above results to any
weighted consensus. Obviously, instead of Eq. (66) we should then have pTxðtÞ ¼ pTxð0Þ,
8 tZ0, where p is a predefined vector specifying the desired weighting. This in turn implies that
instead of Eq. (10), the coupling matrix W(t) should satisfy pTWðtÞ ¼ pT , 8 tZ0. At this point it
is not clear how to select the appropriate cost function and the parameter estimator, different than
those given by Eqs. (11), and (15), (16), so that pTWðtÞ ¼ pT , tZ0, for a vector p specified by
the designer.

Remark 4. Let us point out that the concept of adaptive weights (coupling parameters) in
consensus algorithm has been employed in [28] where the authors proposed interesting
consensus algorithm for distributed sensor fusion. The weight matrix is updated by using the
steepest descent algorithm. The reference signal used in the algorithm is generated by specially
designed linear predictor. In our case the weights are generated by using normalized gradient
type algorithms, and the reference signal xiðt þ 1Þ of the i-th agent is equal to the average of
states of its neighbors.
4. Connection between Eq. (1) and frequency synchronization model

Building on the work by Winfree [17], in 1975 Kuramoto proposed his celebrated model
describing a collective synchronization phenomenon [18]. This model is represented by NZ2
coupled oscillators whose dynamics are given by

_δiðτÞ ¼Ωi þ
XN
j ¼ 1

Γij δjðτÞ�δiðτÞ
� �

; i¼ 1; 2;…;N ð68Þ

with δiðτÞ being the phase of the i-th oscillator, Ωi is its natural frequency, and the interacting
function Γijð�Þ describe the coupling between the i-th and j-th oscillator. Kuramoto analyzed the
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following interacting functions:

Γij δjðτÞ�δiðτÞ
� �¼ K

N
sin δjðτÞ�δiðτÞ
� � ð69Þ

where K defines the coupling strength among oscillators. It is not difficult to see that for the case
of linear coupling the discrete time version of Eq. (68) is similar to the model given by Eqs. (1)
and (2). Let ΓijðzÞ ¼ ðθij=TsÞz, and

_δi τð Þjτ ¼ tTs
¼ δiððt þ 1ÞTsÞ�δiðtTsÞ

Ts
; t ¼ 0; 1; 2;…;

where Ts is the sampling interval. Then from Eq. (68) we can derive

xiðt þ 1Þ ¼Ωi þ
XN
j ¼ 1

θij δjðtÞ�δiðtÞ
� � ð70Þ

xi t þ 1ð Þ ¼ δiðt þ 1Þ�δiðtÞ
Ts

; t¼ 0; 1;…; ð71Þ

where xiðt þ 1Þ is the normalized frequency of the i-th oscillator, while Ωi and δiðtÞ have the
same meaning as in Eq. (68). When denoting signals here, the constant Ts has been omitted, i.e.,
δiðtTsÞ ¼ δiðtÞ. It is obvious that Eq. (71) implies

xiðt þ 1Þ�xiðtÞ ¼
XN
j ¼ 1

θij xjðtÞ�xiðtÞ
� � ð72Þ

which is the model described by Eqs. (1) and (2). If we assume that in Eq. (70) δiðtÞ ¼ 0 for to0,
then xið0Þ ¼Ωi, and model (72) together with the algorithm defined by Eqs. (14)–(17) provides
the intended frequency synchronization, i.e., limt-1xiðtÞ ¼

PN
i ¼ 1 Ωi

� �
=N.

5. Simulation examples
Example 1. Consider network of six agents where undirected graph topology is defined by the
following adjacent matrix:

Ad ¼

0 1 0 1 0 1

1 0 1 0 0 0

0 1 0 0 1 1

1 0 0 0 1 0

0 0 1 1 0 1

1 0 1 0 1 0

2
666666664

3
777777775

ð73Þ

Here Adði; jÞ ¼ 1 indicates that there is direct communication link between agent i and agent j. In
Eq. (1) we set β¼ �0:78, and the initial states are selected as follows, xið0Þ ¼ 2i; i¼ 1;…; 6.
The step size μi in Eq. (15) is set to μi ¼ 1:5, 1r ir6. Matrix Ad shows that the first agent is
connected with the 2nd, 4th, and 6th agents. Hence, vector θ1ðtÞ in Eq. (6) has three nonzero
components, θ12ðtÞ, θ14ðtÞ, and θ16ðtÞ, whose evolution in time is depicted in Fig. 1. Fig. 2 shows
that all agent states xiðtÞ; i¼ 1;…; 6 converge toward consensus value equal to x1ð0Þ þ⋯þð
x6ð0ÞÞ=6¼ 7.



Fig. 1. Evolution of the parameter vector θ1ðtÞ for Example 1.

Fig. 2. The convergence of the network states for Example 1.

Fig. 3. Evolution of the parameter vector θ1ðtÞ for Example 2.
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Example 2. Consider the network from the previous example with βðtÞ ¼ 0:65þ 0:3 cos ðð2π=
200ÞtÞ, tZ 0. In Eq. (15) we set μi ¼ 1 and use the same initial states xið0Þ as in the previous
example. Fig. 3 depicts the tuning of the vector θ1ðtÞ. Fig. 4 shows that despite time variations
of βðtÞ, all agent states synchronize to the consensus value xc¼7. The parameter estimator



Fig. 4. The convergence of the network states for Example 2.
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(14)–(17) is robust with respect to uncertainty of time-varying βðtÞ. From Theorem 1 it follows
that as far as the size of μi, Assumption A2 is a sufficient condition (see relations (52) and
(53)). Simulation experiments indicate that Assumption 2 is not a necessary condition. As a
future research topic it is of interest to examine robustness of the tuning algorithm with respect
to the rate of change of βðtÞ, and the interplay between βðtÞ and the algorithm step size μi.

The unique feature of the proposed algorithm as compared to consensus protocols discussed in
[16] is that the algorithm (15)–(17) provides average consensus in case of uncertain agent
dynamics. Methods discussed in [16] assume that the agent dynamics is known. As far as the
computational complexity, each agent has to run parameter estimator given by Eqs. (15)–(17) of
similar complexity to a standard gradient based adaptive controller [25]. In other words, the i-th
agent estimates Ni parameters, where Ni is the number of its neighbors, thus making the proposed
algorithm to have the same complexity as the normalized least-mean-square (LMS) based
adaptive filter of Ni�1 order (with Ni taps).
6. Conclusions

In this paper we proposed a distributed averaging rule where each node of a network locally
tunes its coupling parameters by using NGA recursion. It is shown that the coupling parameter
sequence converges, and all agent states asymptotically reach consensus equal to the average of
initial state values. As a future research topic, it is of interest to examine the behavior of the
proposed algorithm in case of time-delay in information exchange between agents, time-varying
network topologies, quantization errors, data-packets drops, and noisy measurements. Of
particular interest would be to cast the considered consensus problem in the framework presented
in [29] in case of state time delay, or [30] in case of feedback design based on quantized
measurements. The authors are exploring the possibility of studying the robustness of the
proposed algorithm in case of unreliable communication links by using tools developed in
[31,32]. In order to reduce the amount of inter-agent communications and lower the frequency of
weight updates, it is important to extend the derived results to the case of event-triggered
consensus protocols by using the method developed in [33].
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Appendix
Kronecker Lemma. Assume that

ðiÞ
Xt
k ¼ 1

aðkÞ converges

ðiiÞ frðtÞg; tZ0 is a nondecreasing sequence
ðiiiÞ lim

t-1
rðtÞ ¼1:

Then

lim
t-1

1
rðtÞ

Xt
k ¼ 1

r kð Þa kð Þ ¼ 0:

Proof. Proof of this lemma can be found in [25, p. 503]. □
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