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Abstract

In this paper we present an adaptive algorithm for distributed average consensus over a network of multi-agent
systems. The coupling parameters defining the strength of agents interactions are locally self-tuned by each node
based on the state information of its neighbors. Assuming that the underlying graph is connected, it is shown that
the sequence of coupling parameters generated by normalized gradient algorithm (NGA) is convergent, and the
agent states converge toward the average of the initial state values. Relation of the proposed method to
synchronization phenomenon is discussed. Simulation results illustrate effectiveness of the proposed method.
© 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Emergence of a synchronized collective behavior in multi-agent systems is a topic of significant
interest in various fields of science and engineering. Focal point of study in multi-agent coordination is
understanding the consensus phenomenon where a number of autonomous agents reach a state of
agreement, or synchronize certain state dependent quantity of interest, without central direction. An
example of consensus phenomenon is the collective behavior in population of animals such as flocks,
herds and swarms. The interaction or information exchange among agents is specified by a consensus
algorithm, some times referred to as consensus protocol. Vicseck et al. [1] proposed a model where
each agent is moving in the plane with constant speed and the heading equal to the average of headings
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of its neighbors. Simulation results presented in [1] demonstrate that the alignment is achieved, and
asymptotically all agents move in the same direction. Mathematically rigorous explanation of the
phenomenon observed in the above paper is given in [2,3]. One of the first study of consensus problem
is presented in [4], where a model describing how a group might reach agreement on a common
probability distribution is considered. Among the first considerations of consensus concepts in systems
and control theory is distributed computation over networks [5], and asynchronous optimization
algorithms [6]. For the last twenty years there have been a huge proliferation of interesting results
covering variety of consensus related problems such as formation control, distributed optimization and
task assignment, coordination in flocks and swarms, sensor fusion, distributed estimation and control.
Many of those results consider issues of communication delay and presence of noise in exchanging
information between agents, time-varying network topologies, asynchronous updating of agent states,
and gossip algorithms. Since commenting on many important results in this area will take as much
space as the main body of this paper, we confine ourself to pointing out survey papers and several
monographs containing large amount of important references in this area. Large number of references
are given in [7-9] as well as in the recent books [10—-14]. A fairly comprehensive review of the results
published since 2006 in control systems journals is given in [15], and its extended version [16] with
over 300 references.

A separate track of large amount of contributions on emergence of spontaneous order in
networked systems pursued not exclusively but mainly by the physicists' community is related to
synchronizations phenomenon. Synchronization is an intriguing concept ubiquitous in
biological, chemical, physical and social systems. Winfree [17] assumed that the coherent
cooperative action can be modeled by a collection of interactive oscillatory agents. To model
synchronization of biological clocks he proposed to use a population of interacting limit-cycle
oscillators. Building on Winfree's work, Kuramoto [18] analytically studied conditions for
spontaneous frequency synchronization of a group of phase coupled oscillators. Large number of
references with impressive results on the subject of synchronization in oscillator networks can be
found in recent surveys [19-21].

In this paper we consider the problem of adaptively tuning inter-agent coupling parameters so that
the reached consensus value is equal to the average of initial conditions, hence the name average
consensus. We analyze networked systems with identical dynamics represented by a discrete time
integrator with unknown scalar parameter. Each agent locally tunes the coupling parameters so that the
square of the error between agent state and the average of the states of its neighbors is minimized.
Assuming that the underlying network graph is connected, it is proved that with the proposed self-
tuning rule all agent states converge towards the same value equal to the average of the initial state
values. We also show that in the special case of all-to-all coupling, average consensus can be achieved
with a simple interacting function proportional to the error between respective agent state and the
average of states of the rest of agents. In addition we discuss how the problem of frequency
synchronization fits within the proposed self-tuning average consensus scheme.

The paper is organized as follows. Problem statement is given in Section 2. Global stability of
self-tuning consensus is given in Section 3. Section 4 discusses relation of self-tuning consensus
to Kuramoto synchronization. Simulation experiments are presented in Section 5.

Notation: The following notation is used throughout the paper:

® The abbreviation RHS means “right-hand side”.

® ‘R denotes the set of real numbers.

® The space of n-dimensional vectors with real elements is denoted by R".
® The superscript 7 denotes the transpose of a matrix.
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® I represents the identity matrix.

® p(A) denotes the spectral radius of a matrix A.

e In this paper # is used to denote a vector with all entries equal to one, i.e., Z7 =(1,1,...,1).

® When performing majorizations and in certain upper bounds, we use c;, i=1,2,... to denote
nonnegative constants whose values are unimportant.

e [IxIl denotes Euclidean norm of a vector x, and sgn(y) denotes the sign of a real number y.

e In this paper matrices are denoted by upper case boldface letters, and vectors are denoted by
lower case boldface letters.

2. Problem formulation

Consider a group of N agents described by a discrete time dynamics given by
x(t+ D) =x(t) + p(Oui(t), x(0)=x;,, i=1,...N (1)

where time index 7 € {0, 1,2, ...}, x;(0) € R, and u;(¢) € R are the state and control signal of agent
i at time ¢, respectively, x;, € R, 1 <i < N are initial states, while (¢) is the unknown input gain.
The communication topology of the above network of agents can be modeled by an undirected
graph G = (V, E) with the set of nodes V= {1,2,...,N} and the set of edges or communication
links ESV x V. The node i represents the agent i, and the ordered pairs (i, j), i #j denote edges
where (7, j) € E, if and only if the i-th agent can directly receive information from the j-th agent.
For undirected graph, if (i,j) € E then (j, i) € E. The set of neighbors of node i is denoted by
Ni={jeVIijeE}.

Model (1) can be viewed as a discrete time version of a group of identical continuous time
agents whose dynamics is

5= (@), 50 =,

where m is the mass, u;(7) is the external force driving the motion of the i-th agent, and x;(7) is its
velocity. Such model can be of interest in analyzing flock behavior or considering the problem of
achieving common velocity in a formation of unmanned aerial vehicles. In this case due to the fuel
consumption during flight, mass m can be a slowly time-varying quantity. The parameter () in Eq.
(1) can be interpreted as the inverse of mass m. Another situation where model (1) is of interest is the
rendezvous problem with the objective for all vehicles to meet at a common location using only
relative position information [10,11]. The dynamics of the i-th vehicle can be described by a simple
discrete-time model given by Eq. (1). In this case the input gain f(z) can be taken to be a constant,
p(t) = pB. Due to uncertainties in the control actuator dynamics, f can be considered an unknown
parameter.

Each agent generates control sequence {u;(¢)} so that all state variables asymptotically reach an
agreement, i.e., lim,_, oo x;(f) = x., i € V, for some x. € R. We then say that the network of agents
has reached consensus, and refer to x,. as the consensus value. Normally u,(7) is a function of the
i-th agent state and the states of its neighbors. The network theory literature often refers to u,(¢) as
the consensus protocol. If x. = (1/N) Zf’: 1 %i(0), we say that the network achieves average
consensus. In this paper we consider the following protocol:

w(t) =Y 0500 —x(1), ieV )

jEN,'
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where 6;;(f) € R are interagent coupling parameters to be determined so that the agent states
achieve average consensus. Note that the control signal given in Eq. (2) can be written in the
form

ui(t) =00 (1), ieV ®3)
where

0,)" =[0nTu,...,0nTN] 4)
and

@0 =leu, ..., en] ®)

where €;(1) = (x;(t) —x:(1))Z;, and Z; is an indicator function given by Z; =1 if je N}, and
;=0 if j¢ N;. After substituting Eq. (3) in Eq. (1) we derive

xi(t+ 1) =xi(1) + OO0 @), i€V, (6)
Define

()" = [x1(1), - 20(D)]: )
Then Eq. (6) can be written in the compact form

x(t+ 1) =W(@)x(1) 8)
where W(r) is an N x N matrix given by

PD)0;(1), JjeN;
WO = @], wyy=4 A0 2 00 = ©)
0 otherwise.

It is well-known that the condition for the iteration in Eq. (8) to converge to the average of
initial states is #7 =(1,...,1) to be left and right eigenvector of W(¢) corresponding to the
eigenvalue 4; =1, i.e.,

W) =¢T and W) =<¢. (10)

Then, the sum of the states is time invariant, i.e. Z7x(r + 1) = £7x(t) = --- = #x(0), and # (or
scalar multiple of it) is a fixed point of the recursion defined by Eq. (8).

In this paper we satisfy conditions given in Eq. (10) by generating symmetric matrix W(¢),
t > 0. Each agent tunes its parameter vector 8;(t) by minimizing the following cost function:

Ji0) =10t + =%t + 1))°, ieV (11)

where X;(t 4+ 1) represents the average of the i-th agent neighbors states including its own state,

W)= o Yo, N=AG UG (12
e,

I+

where N; denotes cardinality of the set A/; (number of elements in N;).
Since from Eq. (6), ox;(t + 1)/00:(r) = p(t)p(t), gradient based minimization of the cost
function given in Eq. (11) suggests the following updating rule for 6;(¢):

0i(t + 1) =0i(1) — f(D)@ (Dei(r + 1) (13)
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where
eit + ) =x(t + 1)—Xi(r + 1). (14)

Since f(f) is an unknown parameter, instead of Eq. (13), we use the following “normalized
gradient” algorithm. Define

00 =[6,Zu,....00Tin], i=1,...,N.

Then the following scheme can be used to generate 0;(¢), i€ V,

01+ 1) =00~ L sen(pO)p e + 1), ieV ()
9,-,-(t)=%(9;j(r)z,-j+9]<,.(t)zﬁ), jeN., (16)

where 6;(¢) are components of the vector 8;(¢) defined by Eq. (4), ;>0 is the algorithm step
size, and

r(t)=1+ llg,t)I2. (17)

In order to assure that 8;(r) will be updated in the direction of the negative gradient of the cost
function (11), in Eq. (15) it is assumed that the sign of f(¢) is known.

Note that the above algorithm generates the coupling parameter vector 6;(7) in two steps. First
Eq. (15) gives @,(1), i € V. Then according to Eq. (16) the components 6;(r) of @;(r) are obtained
by averaging respective elements of €/(r) and 01’-(t), VjieN; i=1,...,N. Observe that Eq. (16)
guarantees that 0;;(r) = 0;(t), for all i # j. In other words W(¢) in Eq. (8) is a symmetric matrix.
Eq. (16) assumes that besides respective states x,(f) and x(t), agents i and j exchange parameter
values Hi-j(t) and Q}i(t) as well. Iteration (15) starts with arbitrary initial conditions 6;(0) and
0;i(0). The role of gradient normalizer r,(f) will become clear later when we consider global
stability of the algorithm given by Egs. (15)—(17).

From Eq. (15) it can be seen that 6;(¢) is a function of {x;(k + 1)}, 1 <k <t, and {x;(k)},
1<k<t jeN; Also from Egs. (1) and (2) it follows that x;(z+ 1) is a function of
0;i(k),0 < k <t. Thus there is a highly nonlinear interplay between sequences {6;;(f)} and {x;(¢)}
implying that the interaction among agents is not a linear function.

We now comment on distributed nature of the proposed algorithm. From Eq. (2) it is obvious
that each agent generates its control signal u(t), i € V by using only states of its neighbors, i.e.,
states x;(1), j € N;. Also from Egs. (15) and (16) it is clear that the i-th agent generates coupling
parameters 6;;(¢) (used in Eq. (2)) by using only variables obtained from its neighbors j € N;.
Therefore each agent is running its own local algorithm based on information available only from
respective neighbors, without central coordination.

3. Global stability and convergence of the self-tuning consensus

We now examine stability and convergence of the multi-agent system defined by Eq. (6), and
the accompanying algorithm given by Eqgs. (15)—(17). For the sake of clarity, and in order to
avoid tedious and cumbersome algebra, we will analyze the case of constant f(¢), i.e., in Eq. (1)
we set f(t) = for all 1 > 0. The case of time-varying f(f) will be analyzed in the follow up
paper. In this section we show that the algorithm defined by Eqs. (15)—(17) along with the system
dynamics given by Eq. (6) is globally stable in the sense that sequences {e;(7)} and {@;(r)}, t >0,
i €V, have finite total energies, the sequence {0y(t)}, 1>0, i,keV, i#k, is convergent as



M. Radenkovic, M. Tadi / Journal of the Franklin Institute 352 (2015) 1152—1168 1157

t— 00, and all states x;(f) converge towards the same consensus value equal to the average of the
initial states x;(0), i=1, ..., N. By global we mean that all of the above claims hold for all initial
conditions x;(0), and 6;(0), i,je V. The above propositions are proved by assuming the
following.

Assumption 1. The underlying network graph is connected.

Assumption 2. The sign of parameter f in Eq. (1), and the upper bound f,,.. of |f| are known
for each agent. The step size y; in Eq. (15) satisfies y; <2/p,,, forall ie V.

Define
e() =[ei(0),....,en ()], (18)
and
d.() =x()—x(1)¢, ieV. (19)

The following lemma is useful for future reference.

Lemma 1. Let Assumption | hold. Then for alli=1,...,N,
Slgt+DIP<ci+e Y llet+ DI ¥a=0 (20)
=0 =0

where e(t) is defined by Eq. (18), ¢;(t) is defined by Eq. (19), while ¢, and c, are positive
constants.

Proof. Note that x;(r + 1) given by Eq. (12) can be written in the form

Xi(t + 1) =a] x(t) 21)
where x(¢) is the state vector defined by Eq. (7), and
1
O = ancoan], ay= 14N, I TdIEN (22)
0 otherwise.
Then from Egs. (14), (21), and (22), we have
x(t+1)=Ax(t) + et + 1), (23)
where A is an N x N matrix given by A = [a;], with elements a;; defined by Eq. (22). Since
Ac=¢, M=(1,1,...,1) (24)

it follows that 4; =1 is an eigenvalue of A with the corresponding right eigenvector equal to Z.
Since A is a stochastic matrix, 4; = 1 is its maximal eigenvalue [22, p. 83]. By virtue of the fact
that G is a connected graph, the nonnegative matrix A is irreducible (see for example [23,
theorem 6.2.24, p. 362]) implying that 4; = 1 is an algebraically simple eigenvalue of A (see [23,
theorem 8.4.4, p. 508]). Thus A is a primitive matrix. Consequently, except A, = 1, the rest of the
eigenvalues 4; of the matrix A satisfy the condition |1;|<1, i=2,...,N. Let y be the left
eigenvector of A associated to 4;, and normalized so that ny =1.
Based on this discussion we can decompose the matrix A as follows:

A=A +2y, y=1 (25)
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where all eigenvalues of A; are inside the unit circle, i.e., the spectral radius of A; satisfies
p(A1)<1. Hence from Eq. (23), one can obtain

x(t + 1) = Aix(t) + £y x(¢) + e(t + 1) (26)
or

X(t+ 1)=H(g™ " [£y"x(t) + e(t + 1)) (27)
where

Hig~)=0-g"'A)~! (28)

and ¢! is the unit delay operator, i.e., ¢~ 'x(¢ + 1) =x(). Since from Eqgs. (24) and (25),
A¢=0, we have Hlg ) =(1+ >}, q’kA]f)f =7¢. Then Eq. (27) gives

x(t + 1) = 2y’ x(t) + H(g ™ He(t + 1). (29)
From Egs. (29) and (19) we can derive
Gt + 1) =2y"x(t) + H(g et + 1)—xi(t + 1) (30)
or
O, (t + 1) = 2y (x(t) — x,(1)) + £y Ex:() — Exi(t + 1) + H(g ™ De(r + 1). 31
Since y'# =1, we have
bt + 1) =2y () + (D) —xi(r + D] + H(g ™ e(r + 1). (32
Observe that Eq. (12) can be written as
xi(t+ 1) = xi(1) + b (1) (33)
where b; is defined as follows:
1
b = (b, bl by=d TNy N (34)
0 otherwise.

Then the error ¢;(t + 1) given by Eq. (14) can be expressed as

et + 1) =x(t + 1) —x(1)—b] p(2). (35)
Define the following matrix:

Q =4(y—b)". (36)
Then by using Eq. (35) in the second term on the RHS of Eq. (32) one can obtain

Gt + 1) = Qip;(1)—Lei(t + 1) + H(g ™ e(r + 1), (37
from where it follows that

$i(t+1)=Qi,(0) + i Q~“[H(g™ ek + 1) = Zei(k + 1)]. (38)

k=0

Note that the matrix Q; in Eq. (36) is of rank 1 and its only nonzero eigenvalue is

N
N;
=¢T —b,-=1—fTb,-=1—§ bp=1——"<1.
P1 (y ) P k TN,
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Hence, there exists a positive constant ¢3 such that |l Qill <es3ph, 0<p <1, for all k>0 [24,
p. 174]. Then from Eq. (38) it follows that for some positive constants ¢4 and cs,

t
It + D> <caph +e5 > pi etk + D112, (39)
k=0

where we used the fact that H(g ~ ') is a stable operator, and e,(f) is absorbed by e(f). We say that
the operator H(g~') given by Eq. (28) is stable if the corresponding transfer function
H(z~')=(I—z""'A,) " ! is stable, where z is a complex variable. The transfer function H(z ") is
stable by virtue of the fact that p(A;)<1, i.e., all eigenvalues of A are strictly inside the unit
circle.

Summing up both sides of Eq. (39) from =0 to t=n yields Eq. (20). ©

Next we can formulate global stability results.

Theorem 1. Let Assumptions Al and A2 hold. Then there exist some positive constants ce and ¢,
so that for all finite initial conditions x;(0) and 0;(0), 1 <i,j <N, the multi-agent system given
by Eq. (6) and the parameter estimation algorithm defined by Egs. (15)—(17) provide

(1) zn:||e(t+1)||zgc6<oo, n=>0, (40)
t=0

) zn:ll¢i(t)\|2§C7<oo, VieV (41)
t=0

Sfor all n > 0,where the vector ¢,(t) is defined by Eq. (19).
(3) 1im@(¢) exists, VYieV
>0
(4) All agents converge toward the average of initial state values x;(0), i.e.,

£Tx(0
fimxn = 0 ey (42)
t—00 N

where € is the vector with all elements equal to one.

Proof. We first express the error e;(r + 1) =x;(t+ 1)—X;(t + 1) in terms of the following
parameter error:

0:(1) = (1) — b, 43)
where the vectors b, are defined in Eq. (34). Note that Eq. (12) can be written in the form
Xt + 1) =x,(1) + b (1) (44)

where @,(7) is defined by Eq. (5). Then it is not difficult to see that from Egs. (6), (14), (43), and
(44), we can obtain

eilt+ 1) =0, (). (45)

The parameter errors 0.(1) are in effect governed by the recursion given by Eq. (15). In light of
definitions given by Egs. (4), (5), and (43), from Eq. (15), we can write the following recursion
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for each component of éi(t):
0t + DIy =0,(0T;— rL@ Bles(Deit + 1) (46)
where é:] =pO;(t + 1)=by, j€ N After squaring both sides of Eq. (46) it follows that

2u up

Ot + 1Ty =0,T;— 0 B0 (e (DT yert + 1) + 22 e S ey ey(1)?, 7)
for all ie V, je ;. Since Eq. (16) implies
Dyt + 1? <3 (0 + 1P + 8+ 1?),
from Eq. (47) one can derive
0yt + 1°T; < % [0(t) Ty + 0;(t)°L ;1]
u,l(ﬂ)l 0;j(ei (DL jei(t + 1) — M"(ﬁ)' 0;i(t)e;i(t)Ljiej(t + 1)
i J
22 242
M LA 2
+ 2ri(t)2 ei() et + 1)+ 2rj(t)2 €ji(t) ej(t + 1)". (48)
Define
N ~
(i)=Y 1011, (49)

i=1
Then by virtue of the fact that 9,,(t) = 9],(t) and by Eq. (4), 10;()11%= E ,](t) 7, from
Eq. (48) we can obtain

v(t+1) <v(r)— Iﬁl et +1) Z 0ii(Dex (DT

j=1

—1pl Z et + 1) Z 0i(t)e;i(1)Z;

—17 i=1

ﬂ2 N
+5 Z () e,(t+1) Zey(t)

= ,()

ﬂzl;l Ti _]—1
I et Ze,,(r) (50)
j-l] i=1

Observe that Egs. (4) and (5) imply Z -1 ,](t)el, i = =0, (t)T¢ (r) which together with Eq. (45)
yields

=

> 0500y =et+ 1), i=1,...,N. (51)

By using Eq. (51) in Eq. (50) it follows that

N 2 2
et + 1) + Z("ﬂ) ”“’?))” ei(t +1)? (52)

N
v(t + 1)£v(t)—2|[3|‘ ()
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where we used the fact that from Eq. (5), Z -1 e,](t) = ll@,(1)1I%. Since by definition of r«(?)
(see Eq (17)), (H @0 2/r,(t)) < 1, the third term on the RHS of Eq. (52) can be overbounded
by Z 1 (g B) et + 1) /ri(t). Hence, from relation (52) we obtain

pilpl et +1)°
t+1)<w()-2 ; -] —. 53
NI ;Mm( )t (53)
Summing up both sides of Eq. (53) from r=0 to t=n gives
1B\ et + 1)°
1) <v(0)—2 1— _— . 54
v+ 1) < v(0)~ ZZI |ﬂ|< 2) e (54)
Since by Assumption 2, the step size u; satisfies 1 —(y;]]/2) > 0, inequality (54) implies
(t+1)°
Zze” k<o, (55)
i=1t=0 I",'(l)
for some positive constant K; dependent on v(0), |f| and y;, i=1,...,N. Define
N t
=1+ lgol? (56)

i=lk=1

where @;(k) is defined by Eq. (5). Since lle(r + 1)11> = vaz et + 1)?, and using the fact that
by Egs. (17) and (56), 7(t) > ri(t) for i=1, ..., N, relation (55) implies

|le(z + D>
Z =5 <K, <o0. (57)

Next we analyze 7(n), the denominator in Eq. (57). Since from Egs. (5) and (19),
I, < lig;(t)l, Yt=>0, Eq. (17) gives ri(f) <1+ ligh;(r)I>. Then relations (20) and (56)
imply that for some positive constants cg and co,

r(n)<l+zzH¢(t)|\2<C3+69ZHe(t+l)H2 (58)

0i=1 t=0
which together with Eq. (57) gives
- le(r+1)12
=8 +cod o _ o lle(m + l)H2 -

for all n > 0. We now demonstrate by contradiction that ' _ , lle(m + 1) 1% is bounded for all
t>0. Assume that Zm—O lle(m+ 1)I12—o00 as t—o0. Then by Kronecker's Lemma (for
convenience it is given in the Appendix) from Eq. (59), one can derive

Tim (Z e(r + 1)2>/<c8 +c9i: le(r + 1)|2> =0, (60)
t=0

for some positive constants cg and co. Statement 1 of this theorem directly follows from the last
equation. Relation (41) is a consequence of Eq. (40) and Lemma 1. We now prove that the
parameter sequence {6;(¢)}, >0, 1 <i,j <N, has a limit. From Egs. (16) and (46), we can write

. 11y » N
0yt + DIy = 3 [0t + D+ 8+ 1|7y = 0,00
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- = |ﬂ| [ 0 )e,j(t)e (t+ 1) +—— ej,(t)ej(t + l)] (61)

/()

After summing both sides of Eq. (61) from t=0 to t=n, it follows that

0t + NI = 05(0)T;— Iﬁl Z { eyfet+ 1)+ 7 )eji(t)ej(l‘ + 1)]. (62)
Consider now an infinite series R;; defined by
_ einet + 1)
Rj= ;7” 0 (63)
Since by Egs. (5) and (19), |e;(1)| < ll@;(1) || < I, (1)Il, we have
o[ OED] 2 S 1) e + 1), (64
=0 ri(t) =0

where we used the fact that by Eq. (17), ri(f) > 1. Then from Egs. (63), (64), and Cauchy—
Schwartz's inequality, it follows that

o0 12 7 1/2
IR;j| < <Z li(1) ”2> (Z et + 1)2> <cjp<00 (65)
=0

t=0

for 1 <1i,j < N. Thus the infinite series R;; is absolutely convergent. Hence, Eq. (62) implies that
lim,Hooé,-j(n) exists. It is left to prove the statement in Eq. (42) of the theorem. Since by
construction (see Eq. (16)) matrix W(¢) given by Eq. (9) is symmetric, it is not difficult to see that
W) =¢, and £TW(t)=¢7, V1 >0, where #7 =(1,...,1). Then from Eq. (8) it follows that
the sum of initial states x;(0), i=1,...,N is time invariant, i.e.,

x(t+ 1) =Tx(t) = - = £7x(0). (66)

On the other hand the definition in Eq. (19) and the statement (41) give lim,_, o (X(f)—
x(1)?)=0, or

lim ("x(t)—xi(t)"¢) =0, ieV. (67)

Since #7¢ = N, Eqs. (66) and (67) imply that lim,_, ..x;(t) = (1/N)¢"x(0), i = 1, ..., N. Thus the
theorem is proved. O

Let us comment on the role of normalizer r{(f) in Eq. (15). Assume for a moment that instead
of Eq. (17), r(t) is equal to one. Then if at some time instant |l@,(¢)|I?> becomes too large, the
third term on the RHS of Eq. (52) can dominate the second term, and v(z + 1) may not be non-
increasing function of time #. In combination with appropriate choice of the step size u;, the
normalizer r,(f) guarantees that the second term on the RHS of Eq. (52) is larger than the third
term, and thus v(z 4+ 1) < v(z) for all # > 0 (see relation (53)).

Remark 1. In Eq. (15) we assumed that the sign of parameter f is known. This parameter
represents the input gain, often referred to as the high-frequency gain of agent dynamics.
Similarly as in the case of adaptive control systems, it is not uncommon to assume that the sign
of f is a priory knowledge available to the designer (see for example [25, p. 193], or [26,
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p. 332]). In case of a previously mentioned kinematic model x;(z) = (1/m)u;(z), parameter S is
equal to (1/m) where m is the mass. Obviously we can assume that sgn(1/m)> 0.

Remark 2. For simplicity of presentation, in the previous proof we assumed that parameter f is
a constant. The case of time-varying f can be analyzed by using techniques similar to [27] which
is different than the analysis presented in this paper. In general, statements (40) and (41) cannot
be derived in the case of time-varying /5. For example if we assume that |5(t) — f(t—1)| < «, and
1P()] < Par <00, Vi > 1, then instead of Eqgs. (40) and (41) it would be possible to demonstrate
that

1 n
lim supfz le(r+ 1)II% < cpya?

n—oo M5

and

1 n
li — l(r)1I* < 2
1m SuPn Z DD <cna

n—0oo t=0

for some positive constants c¢;; and cy,. The case of time-varying f is a future research topic by
the authors.

Remark 3. It is of interest to investigate if it is possible to extend the above results to any
weighted consensus. Obviously, instead of Eq. (66) we should then have p’x(f) = p’x(0),
Vit > 0, where p is a predefined vector specifying the desired weighting. This in turn implies that
instead of Eq. (10), the coupling matrix W(¢) should satisfy p” W(¢) = p”, V¢ > 0. At this point it
is not clear how to select the appropriate cost function and the parameter estimator, different than
those given by Eqgs. (11), and (15), (16), so that p? W(t) =p”, t > 0, for a vector p specified by
the designer.

Remark 4. Let us point out that the concept of adaptive weights (coupling parameters) in
consensus algorithm has been employed in [28] where the authors proposed interesting
consensus algorithm for distributed sensor fusion. The weight matrix is updated by using the
steepest descent algorithm. The reference signal used in the algorithm is generated by specially
designed linear predictor. In our case the weights are generated by using normalized gradient
type algorithms, and the reference signal X;(t 4+ 1) of the i-th agent is equal to the average of
states of its neighbors.

4. Connection between Eq. (1) and frequency synchronization model

Building on the work by Winfree [17], in 1975 Kuramoto proposed his celebrated model
describing a collective synchronization phenomenon [18]. This model is represented by N > 2
coupled oscillators whose dynamics are given by

N
5it) =2+ > Iy(5(r)—6i(x)), i=12,...N (68)
j=1

with &;(r) being the phase of the i-th oscillator, £2; is its natural frequency, and the interacting
function I;(-) describe the coupling between the i-th and j-th oscillator. Kuramoto analyzed the
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following interacting functions:
K .
F,‘j (5](’[) —5i(1)) = N Sin (51(1) —5,(‘[')) (69)

where K defines the coupling strength among oscillators. It is not difficult to see that for the case
of linear coupling the discrete time version of Eq. (68) is similar to the model given by Eqs. (1)
and (2). Let I'(z) = (0;;/Ts)z, and

_ 0t + DTy) —6:(T)

5D =i, = - . 1=0,1,2,...,

where T is the sampling interval. Then from Eq. (68) we can derive

N
X+ D=2+ > 0;(5()—05:(1) (70)
j=1
5i(t +1)—6,(1)
T, ’
where x;(r + 1) is the normalized frequency of the i-th oscillator, while £; and &;(¢) have the

same meaning as in Eq. (68). When denoting signals here, the constant 7 has been omitted, i.e.,
0i(tTs) = 6;(¢). 1t is obvious that Eq. (71) implies

xi(t+1)= t=0,1,..., (71)

N
X+ D=x(0) ="y 05 (x()—xi(1)) (72)

Jj=1

which is the model described by Egs. (1) and (2). If we assume that in Eq. (70) 6;(t) = 0 for 1 <0,
then x;(0) = €2;, and model (72) together with the algorithm defined by Eqs. (14)—(17) provides
the intended frequency synchronization, i.e., lim;_, 5ox;(f) = (vaz | .Qi) /N.

5. Simulation examples

Example 1. Consider network of six agents where undirected graph topology is defined by the
following adjacent matrix:

01 0 1 0 17
101000
010011

A=110 001 0 (73)
001101
1 010 1 0

Here A4(i,j) = 1 indicates that there is direct communication link between agent i and agent j. In
Eq. (1) we set = —0.78, and the initial states are selected as follows, x;(0)=2i, i=1,...,6.
The step size y; in Eq. (15) is set to u; = 1.5, 1 <i < 6. Matrix A, shows that the first agent is
connected with the 2nd, 4th, and 6th agents. Hence, vector () in Eq. (6) has three nonzero
components, 015(t), 014(t), and 6,4(7), whose evolution in time is depicted in Fig. 1. Fig. 2 shows
that all agent states x;(z), i=1,...,6 converge toward consensus value equal to (x1(0) 4 -+

x%6(0))/6=1.
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Fig. 1. Evolution of the parameter vector ,(f) for Example 1.
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Fig. 2. The convergence of the network states for Example 1.
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Fig. 3. Evolution of the parameter vector @,(r) for Example 2.

Example 2. Consider the network from the previous example with §(r) = 0.65 + 0.3 cos ((2z/
200)t), t = 0. In Eq. (15) we set y; = 1 and use the same initial states x;(0) as in the previous
example. Fig. 3 depicts the tuning of the vector 8,(¢). Fig. 4 shows that despite time variations
of f(t), all agent states synchronize to the consensus value x,=7. The parameter estimator
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Fig. 4. The convergence of the network states for Example 2.

(14)—(17) is robust with respect to uncertainty of time-varying f(f). From Theorem 1 it follows
that as far as the size of y;, Assumption A2 is a sufficient condition (see relations (52) and
(53)). Simulation experiments indicate that Assumption 2 is not a necessary condition. As a
future research topic it is of interest to examine robustness of the tuning algorithm with respect
to the rate of change of f(¢), and the interplay between f(¢) and the algorithm step size u;.

The unique feature of the proposed algorithm as compared to consensus protocols discussed in
[16] is that the algorithm (15)—(17) provides average consensus in case of uncertain agent
dynamics. Methods discussed in [16] assume that the agent dynamics is known. As far as the
computational complexity, each agent has to run parameter estimator given by Eqs. (15)—(17) of
similar complexity to a standard gradient based adaptive controller [25]. In other words, the i-th
agent estimates N; parameters, where N; is the number of its neighbors, thus making the proposed
algorithm to have the same complexity as the normalized least-mean-square (LMS) based
adaptive filter of N;— 1 order (with N; taps).

6. Conclusions

In this paper we proposed a distributed averaging rule where each node of a network locally
tunes its coupling parameters by using NGA recursion. It is shown that the coupling parameter
sequence converges, and all agent states asymptotically reach consensus equal to the average of
initial state values. As a future research topic, it is of interest to examine the behavior of the
proposed algorithm in case of time-delay in information exchange between agents, time-varying
network topologies, quantization errors, data-packets drops, and noisy measurements. Of
particular interest would be to cast the considered consensus problem in the framework presented
in [29] in case of state time delay, or [30] in case of feedback design based on quantized
measurements. The authors are exploring the possibility of studying the robustness of the
proposed algorithm in case of unreliable communication links by using tools developed in
[31,32]. In order to reduce the amount of inter-agent communications and lower the frequency of
weight updates, it is important to extend the derived results to the case of event-triggered
consensus protocols by using the method developed in [33].
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Appendix

Kronecker Lemma. Assume that

!
@) Z a(k) converges
k=1
(i) {r(®)}, t=0 is a nondecreasing sequence
(iii)  lim r(¢) = oo.
1—>00

Then

1—>00

N R
lim 0 kz::l r(k)a(k) =0.

Proof. Proof of this lemma can be found in [25, p. 503]. ©
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