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Abstract

Performance measurement by means of key performance indicators (KPIs) is a widespread device for communicating qualitative and quantitative

business objectives throughout an organization and monitoring their achievement. It seems desirable to also apply this concept to dependably

influencing the operational behaviour of distributed agent controlled processes, which have progressively gained in importance in production

logistics and control over recent years as compared to centralized control methods. However, planning and scheduling with numeric goal systems

at present still poses a challenging task within the field of computational intelligence.

In this paper, a framework is presented that enables global coordination of agents in a multi-agent system through user-configurable numeric

key performance indicators and associated objectives. A practical approach to distributed control based on periodical mathematical optimization

of the defined KPI goal system is described that focuses on how automatic key figure aggregation over changing groups and hierarchies of agents

and other business objects can be appropriately managed when proactive modification of these organizational structures, e.g., agents deliberately

forming and disbanding groups, is an integral part of the control problem. Five variants of this approach are compared in a case study with a

simulated shop floor where incoming manufacturing orders need to be assigned to different machine tools.
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1. Introduction

In production logistics and control, distributed autonomous

multi-agent planning has progressively gained in importance

over recent years as compared to centralized control methods.

This is largely attributable to an increased need for flexibility

within the respective processes, e.g., stemming from a contin-

uing trend towards higher degrees of product customization in

conjunction with smaller lot counts and preference of just-in-

time production and delivery, which classical approaches often

cannot satisfy sufficiently [1–3]. Despite their proclaimed au-

tonomy, agent based control approaches still must be able to

adhere to various business goals and, hence, should be able

to dependably adjust to changing qualitative and quantitative

objectives defined by human decision makers. In business or-

ganizations, performance measurement by means of numeric

key performance indicators (KPIs) and associated objectives is

a widespread device for communicating goals throughout the

organization and monitoring their achievement [4]. It therefore

seems desirable to also apply this concept to influencing the

operational behaviour of agent controlled processes [5]. How-

ever, planning and scheduling with numeric goal systems at

present still poses a challenging task within the field of com-

putational intelligence. This holds for centralized control and

even more for distributed agent systems, as the latter require

additional mechanisms for proper inter-agent coordination to

jointly ensure an acceptable global system state. Especially in

cases where dynamic reorganization is an integral part of the

control problem to be solved, with agents deliberately forming

and disbanding groups and rearranging in certain other ways,

distributed control approaches are called for, which explicitly

consider future change of the organizational relationships be-

tween the agents in their planning and optimization procedures.

In this paper, a framework is presented that enables local

and global control and coordination of agents in a multi-agent

system through user-configurable key performance indicators.

Agents locally assess key figure values from their scope of vis-

ibility, e.g., in the context of production data acquisition, and

exchange this information to construct a global view on the sys-

tem. Given a set of user-defined objectives, key figure target

values are determined in a distributed mathematical optimiza-

tion process at run-time and then shared among the agents as
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input into their local planning processes. A practical approach

to this distributed optimization and planning task is described.

It focuses on how automatic key figure aggregation over chang-

ing groups and hierarchies can be appropriately handled when

deliberate and frequent modification of the agent organization

is a fundamental aspect of the control and coordination problem

at hand. Five variants of this method with different handling of

the organizational structure during optimization are compared

in a case study with a simulated shop floor where incoming cus-

tomer orders need to be assigned to different machine tools.

The presented framework, which has been implemented as

a Java software library for multi-agent systems, constitutes an

important step towards the effective and dependable integration

of business KPI systems into autonomous agent controlled pro-

cesses with highly dynamic inter-agent relationships. In prac-

tice, the emergence of unanticipated, chaotic, and sometimes

even economically unfavourable behaviour often cannot be en-

tirely ruled out for such processes due to an intended loose cou-

pling of the agents. The KPI agent control framework aims at

minimizing this risk by offering the system user a powerful and

flexible way of defining goal specifications and performance

measures for steering and monitoring the exhibited run-time

agent behaviour. While the planning component used in the ex-

periments has been implemented for the examined production

control scenario only, the Java KPI library as well as the coor-

dination strategies discussed in this paper support the definition

of arbitrary key figures in a multitude of different multi-agent

application domains where KPI based control is desired.

2. Key figure based agent control and coordination

Real-world logistic planning and control problems usually

require the consideration of multiple qualitative and quantita-

tive objectives, often with subsets of them mutually conflict-

ing at the local operational or global organizational level (e.g.,

maximization of machine utilization versus minimization of

throughput time in shop floor control problems). The solu-

tion of such problems therefore involves the identification of

economically suitable trade-offs between these different goals

by utilizing techniques from the field of operations research,

such as non-linear multi-criteria optimization [6–8]. Because a

problem might, in general, have multiple optima, its distribution

among several autonomously-acting agents must ensure that all

agents jointly aim at the same global system state. Would each

agent strive for a different optimum with its local actions, then

a globally suboptimal state might be the result.

Fig. 1 illustrates our basic approach to multi-agent coordina-

tion by means of a numeric goal system modelled as a computa-

tional graph over a hierarchy of production resources, each one

represented by an agent. In our framework, each agent periodi-

cally captures time-stamped values of a fixed set of measurands

from its local scope of visibility, which it can directly influ-

ence with its own actions. Based on these atomic inputs, sets

of composed key figures, which aggregate the measurands as

well as other composed key figures through sequences of basic

arithmetic operations and statistic functions, can be customized

by the system user at run-time by specifying their textual com-

putation formulae. Automatic aggregation of key figures over

resource groups whose sets of members change in the course

of time is possible. Objectives for select key figures are de-
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Fig. 1. Coordination by centralized group optimization.

clared by means of objective functions that map the respective

key figure value to a satisfaction level in the normalized range

[0, 1] ⊂ R. In the current software implementation, the ob-

jective functions are specified by the user as piecewise-linear

functions (PWLFs), which allow for easy GUI based mod-

elling while simultaneously enforcing clamping to the permit-

ted range in an intuitive way. The entirety of all configured key

figure objectives defines a multi-criteria optimization problem

in form of a vector-valued function, for which a Pareto optimum

is sought. Single points of the Pareto frontier can be determined

by feeding a suitable scalarization of the component functions,

e.g., their weighted average, into a general mathematical opti-

mizer for maximization [8]. The result is a set of target values

for all atomic measurands on which the objective function de-

pends. Because this set consistently identifies a single Pareto

optimum of the global goal set (preferably the one closest to

the current measurand values according to some suitable dis-

tance function), it is distributed among the agents to be used

as input into their local action planning processes. As a conse-

quence, given that each planning process is sufficiently success-

ful in actually reaching the target values, the action sequences

decentrally planned and executed on their basis by each indi-

vidual agent then aim at the same global system state.

2.1. Centralized variant

While the framework advocates action planning and execu-

tion to always happen in concurrent and decentralized fashion at

each individual agent (due to the common intrinsic characteris-

tics of multi-agent systems [9]), target value generation and dis-

tribution may either be performed centralized by a single global
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coordination agent or in a hierarchically distributed top-down

approach.

An example of the centralized variant, which represents

the original undecomposed problem formulation, is depicted

in Fig. 1. It shows a pair of machine tools Machine-A and

Machine-B situated on a shop floor with three manufactur-

ing orders Order1 to Order3 assigned to their two production

queues. For each order, the current delay of delivery (e.g.,

given in unit time slots) is tracked with an atomic measurand

by the name of Delay, which can directly be influenced (indi-

cated by bold lettering) by the production schedule generated

and executed by the respective machine agent. Each of the

latter manages a local group ORDERS of enqueued unfinished

orders, whose membership status changes with each newly en-

queued as well as completed order. The production schedule

comprises actions such as enqueueing a yet unassigned order,

producing or cancelling an enqueued order, performing main-

tenance, or idling. In the displayed computation formulae, key

figures defined at agents further down the organizational hierar-

chy are referenced by following their name with the name of the

specific agent enclosed in square brackets. This way, the user-

defined composed key figure SumDelays computes the sum of

all delays over the local group of orders at each machine. A

level further up, the machine group key figure TotalDelays adds

the delays on both machines to assess the total delay of all or-

ders currently assigned to the machine pair. A single objective

function is defined for it, which operationalizes a desired min-

imization of the total delay. It has a unique global maximum,

given by Delay�= 0 for all three orders.

In this centralized approach, the entire computational graph

of the objective function f (Delay[Order1], Delay[Order2],

Delay[Order3]) is represented, computed, and optimized at a

single global coordination agent, which periodically sends its

generated target values to the agents further down the hierarchy

(e.g., via message passing). The two machine tool agents then

in turn use the received target values as numeric goals in their

local planning and scheduling processes and thereby jointly at-

tempt to minimize TotalDelays.

2.2. Distributed black-box variant

As the computational graph of the organization-wide KPI

system may get relatively large in real-world applications, its

centralized evaluation and optimization may become infeasible

due to increased problem complexity as well as other practical

constraints, such as high spatial distribution and given commu-

nication bandwidth limitations. For this reason, the framework

allows agents to be treated as black-boxes by hiding the com-

putation rules of their composed key figures, i.e., their local

computational subgraphs, from other agents further up in the

hierarchy. In this distributed approach, with respect to opti-

mization, all key figures whose values are imported from other

agents are locally treated as if they were atomic measurands,

i.e., they become leaves of the local computational graph rep-

resentation. Each agent publishes only the names of its locally

assessed key figures as well as their current values and possible

ranges to the other agents in the system. To this end, the ranges

of the composed key figures are determined with interval arith-

metic [10,11] from the possible ranges of the leaves of the local

graph (i.e., atomic measurands and imported key figures). A

distributed optimization process, in which each agent generates
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target values for the leaves of its local computational graph on

a regular basis, progresses top-down through the organization.

The target values are sent down to the agent’s direct children

in the agent hierarchy, where they are integrated as key figure

objective PWLFs into the local optimization and planning pro-

cesses. The resulting target values are, again, sent down to the

respective children and so forth. At each agent, the last pub-

lished possible ranges of the imported key figures are used as

constraints to the optimization problem. Fig. 2 shows such a

black-box version of the computational graph from Fig. 1.

This modification can significantly reduce the size of the lo-

cally managed graphs and make the global optimization prob-

lem tractable in the first place. However, it may cause the

agents to generate practically unachievable target values for

imported key figures due to the hidden dependencies between

them. Also, as a result of the dependency problem discussed

in the interval arithmetic literature, the occurrence of interval

widening during key figure range computation may lead to such

behaviour. Consequently, depending on the concrete use case,

global system performance in terms of KPI objectives may turn

out significantly worse than with centralized optimization.

3. Limitations with respect to dynamic reorganization

Both the centralized and distributed approach to KPI based

coordination do not work well in cases where the organiza-

tional structure over which the key figures are collected changes

over time. Fig. 3 exemplifies this fact with the scenario of two

milling machines that assess the average cutting volume (given

in cm3) of the milling jobs assigned to them. Two objectives,

aiming at one machine preferring a low and the other a high

average cutting volume via suitable order selection, are defined

at the global level. Their scalarization has two global optima

(Machine-A enqueueing orders with cutting volumes close to

1,000 cm3 and Machine-B orders close to 25,000 cm3, and vice

versa) and therefore requires global agent coordination.

Assuming that the milling blank size for each order is fixed

once the latter enters the system, the CuttingVolume key figure

of the orders cannot be influenced by the planned production
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schedule. Hence, it does not constitute a modifiable atomic

input to the optimization problem but a constant (denoted by

the equals sign in the respective leaves instead of an interval

specification). As a result, the objective function f becomes

nullary, i.e., a constant expression, and the optimization prob-

lem vanishes. No target values can be generated with the ba-

sic approach described above. However, it is apparent that the

average cutting volume at each machine can, indeed, be influ-

enced by the production schedule, namely by different order-to-

machine assignments—i.e., by dynamic reorganization within

the computational graph.

Fig. 4 illustrates how this can be achieved. The ternary logic

predicate instance member(Machine-A, ORDERS, Order2) rep-

resents the fact that the entity Order2 is a member of the group

ORDERS of agent Machine-A in the current state of the graph.

The expression gt(L) yields a graph transformation that modi-

fies the graph in such a way that the given positive or negative

literal L holds for the transformation result.

4. Optimizing the organizational structure

For proper, globally coordinated operationalization of the

key figure objectives defined in Fig. 3, the possible future graph

transformations that are triggered by the agents’ executable ac-

tions (such as enqueueing, producing, or cancelling a manufac-
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turing order) must be considered not only in the local planning

processes but already in the preceding mathematical optimiza-

tion procedure for target value generation and distribution. To

this end, it seems, the optimizer must be able to handle not only

a single objective function but many transformed variations of

it, finally selecting the ones with the highest maximum value.

However, there exist standard optimization algorithms like

Differential Evolution [7], which are relatively robust towards

chaotic, highly multivariate, non-linear objective functions that

are not continuously differentiable at all points. Given such

a method, optimization of several thousand different functions

in succession or even the development of specialized mixed

continuous-numeric and graph-optimizing methods usually is

not necessary. Instead, the possible computational graph vari-

ants can be combined into a single objective function by adding

further numeric input variables that control the organizational

structure. Fig. 5 shows how such decision nodes are inte-

grated into the computational graph of the first machine, which

has been extended with two additional order groups. While

ORDERS, as before, holds the unfinished orders enqueued for

production, all completed and delivered orders are kept in

SOLD ORDERS, and all orders that were cancelled in the past

(e.g., due to machine failures, failed quality tests, or dead-

line troubles) in CANCELLED ORDERS. Orders that are newly

assigned to the machine by the generated production schedule

start off in ORDERS and finally end up either in SOLD ORDERS

or CANCELLED ORDERS. At all times, no order is contained in

more than one distinct group.

In addition to the orders already in the system, a certain num-

ber of future incoming jobs NewOrderi can be added, setting

their numeric properties (e.g., cutting volume, contract price,

remaining time to deadline etc.) to the empirically expectable

interval ranges and using them as atomic inputs into the opti-

mization problem. As the assignment of these placeholder jobs

to particular machines is still optional, they do not start as a

member of any group. A decision node, behaving like a discrete

switch, determines their future final state in the simulation as it

will be considered in the optimization process.

Each decision node Decisioni, 1 ≤ i ≤ M, partitions its

normalized range [0, 1] ⊂ R into Ni individual subintervals of

equal width and, by means of the mapping deci, relates its real-

numbered input value to one of Ni associated graph transforma-
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tions gti,k ∈ Ti, 1 ≤ k ≤ Ni, based on the intersected interval:

deci : [ 0, 1 ]→ Ti = { gti,1, . . . , gti,Ni
}

deci (Decisioni) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

gti,1 if Decisioni ∈
[

0, 1
Ni

)
...

gti,Ni−1 if Decisioni ∈
[

Ni−2
Ni
, Ni−1

Ni

)
gti,Ni

otherwise.

When the objective function f is evaluated at a certain point

x = (x1, . . . , xn ; Decision1, . . . , DecisionM), the sequence

(dec1(Decision1), . . . , decM(DecisionM)) of all graph transfor-

mations selected by the decision nodes is applied to the com-

putational graph before the latter is traversed for determination

of the resulting scalarization function value at x. Tables 1 and 2

display how the decision nodes in Fig. 5 influence the group

membership status of the already existing as well as temporar-

ily inserted placeholder orders during function evaluation.

The possible interval range Y ⊂ R of f can be computed by

evaluating its transformed interval extension Fgt over all com-

binatorially constructible graph transformation sequences gt of

the decision nodes:

Y = interval hull
( ⋃

gt ∈T1 × ··· ×TM

Fgt(X)
)
,

where X = (X1, . . . , Xn) denotes the interval vector that speci-

fies the current input ranges of the graph leaves, excluding the

decision nodes.

Table 1. Membership of existing Order1 depending on decision node value.

Decision1 interval ORDERS CANCELLED ORDERS SOLD ORDERS

[ 0, 1/3 ) X

[ 1/3, 2/3 ) X

[ 2/3, 1 ] X

Table 2. Membership of NewOrderi depending on decision node value.

Decisioni interval ORDERS CANCELLED ORDERS SOLD ORDERS

[ 0, 1/4 )

[ 1/4, 1/2 ) X

[ 1/2, 3/4 ) X

[ 3/4, 1 ] X

With the aid of decision nodes, the numeric optimizer is

able to determine the best future organizational structure of the

multi-agent system within the search space spanned by the in-

serted decision nodes and placeholder objects and to generate

target values for all relevant key figures of the objective function

for distribution within the system. The actual action sequences

for jointly reaching such an optimal system state are then to be

found by the individual agents in their local planning processes.

If a composed key figure aggregates over a group whose mem-

bership status is influenced by a decision node, then a target

value will be distributed for that key figure instead of any of the

nodes in its subgraph. Also, no target values are distributed for

decision nodes and placeholder objects, as those are only tem-

porarily existent in the local computational graph for the time

of the local optimization process and therefore are not visible

to other agents.

5. Evaluation

The KPI control framework has been implemented as a Java

software library and integrated into the existing IntaPS multi-

agent system for production planning and control on simulated

shop floors [12]. Using the pair of global key figure objectives

shown in Fig. 3, plus one local KPI goal per machine maximiz-

ing the monetary value earned with the production and deliv-

ery of manufactured orders, six experiments (CD, BD, CS, BS,

BSM, and O) with different KPI control modes were conducted

in IntaPS. Each experiment involved the two independent agent

controlled milling machines Machine-A and Machine-B and

consisted of 50 simulation runs over 20 discrete production time

slots. The shop floor’s spatial layout was neither modelled nor

considered in any way. In each time slot, six new milling jobs

randomly selected from two different templates (one with a cut-

ting volume of 1,000 cm3, the other with 25,000 cm3) were in-

stantiated for enqueueing or rejection by the two machine tool

agents. All orders require a single manufacturing step only.

A mixed combinatorial-numeric planner implemented specifi-

cally for the IntaPS manufacturing scenario was used by the

two agents to solve this scheduling problem. The general struc-

ture and inherent difficulties of the latter are presented and dis-

cussed in depth in a different article [13]. If key figure target

values were available in the respective KPI control mode, they

were considered in the planning process.

The experiment CD employed centralized optimization (cf.

Sec. 2.1) with decision nodes, and experiment BD the dis-

tributed black-box approach (cf. Sec. 2.2), also with decision

nodes. In contrast, no decision nodes were used in the KPI op-

timization processes of experiments CS (centralized optimiza-

tion) and BS (distributed black-box optimization), leading to

the problems concerning dynamic reorganization discussed in

Sec. 3. In the additional control experiment O, the two group
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objectives regarding the minimum and maximum average cut-

ting volume were removed from the optimization and planning

problem, only measuring their satisfaction, i.e., without actual

operationalization of these goals.

Fig. 6 shows a box-and-whisker diagram of the scalar group

objective satisfaction value reached at the end of each of the

50 randomized simulation runs per experiment. In the plot, al-

most all boxes visualizing the interquartile range collapse to

plain bars, with whiskers being non-existent. This indicates the

fact, that far more than 50% of the simulation runs of each ex-

periment, despite each having a different random sequence of

incoming orders, ended with exactly the same scalar satisfac-

tion value. Because the two global optima (cf. Sec. 3) are the

same in all experiments, the KPI optimization process gener-

ated very similar target value sets throughout all runs of each

experiment—with different success with respect to optimality,

depending on the experiment’s KPI control strategy. In the ma-

jority of cases, the IntaPS planner was able to actually reach

the distributed target values (where available) by generating a

suitable production schedule for the randomized order sets.

As can be seen in the plot, the two decision node based

KPI coordination strategies (CD, BD) were quite successful in

operationalizing the global goal set, whereas centralized opti-

mization without decision nodes (CS) completely failed to gen-

erate any target values related to the orders’ cutting volume.

As a consequence, the machines selected both order types with

equal probability, resulting in an average cutting volume around

13,000 cm3 and a scalar satisfaction value close to 0. The be-

haviour exhibited by the agents in experiment CS and the con-

trol experiment O is therefore the same: The group objectives

stay completely unoperationalized.

In the black-box approach without decision nodes (BS),

both machines enqueued only orders with a cutting volume of

1,000 cm3 because the group coordination agent generated too

small target values for AvgCuttingVolume. This is attributable

to the fact that no proper information about the future possible

range of that key figure was available to that agent due to the

static structure of the computational graph during range com-

putation. Therefore, only one of the two group objectives was

reached. This can be fixed by explicitly specifying the correct

interval as user input into the system, i.e., as prior domain-

specific knowledge. This was done in the BSM variant of ex-

periment BS and resulted in a goal satisfaction similar to the

decision node based approaches. However, such semiautomatic

control with manual range hinting is usually not an option in

larger real-world applications, as it is rather prone to human er-

ror and cannot be considered reliable enough with respect to

unpredicted future change within the agent environment.

6. Conclusion and outlook

In this paper, a novel framework was presented that en-

ables dependable agent control and coordination in multi-agent

systems through user-configurable key performance indicators.

The performance of four fully automatic KPI based control ap-

proaches and one semiautomatic variant was compared in a

minimal production control scenario. Among the fully auto-

matic approaches, the two that integrated possible reorganiza-

tion of the agents into the objective function and thereby con-

sidered future change of the organizational structure in the KPI

optimization process achieved the best system-wide goal oper-

ationalization. This was accomplished with a standard mathe-

matical optimization module, i.e., without the development of

specialized methods for mixed numeric and graph optimization.

The framework, which has been implemented as a Java soft-

ware library, constitutes an important step towards the effective

and robust integration of business KPI systems into autonomous

agent controlled business processes with highly dynamic inter-

agent relationships. Outside production control, the library can

be used in many different application domains where KPI based

control is desired. The extension of our experimental system to

process chains across multiple machines and its application and

evaluation in large real-world production scenarios, including

a still necessary improvement of the domain-specific planning

module’s performance for this purpose, remains future work.
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