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In robust iterative identification and control redesign techniques, a stabilizing controller connected in a
closed loop is normally replaced by an alternative attractive stabilizing controller to improve robustness
and performance of the closed-loop system. In this paper, novel test methods are proposed to check
whether a new stabilizing controller improves performance or not when the existing controller is replaced
by this new controller in the closed loop. The proposed tests are based on closed-loop data and no plant
model, and can be used for both the SISO and MIMO linear time-invariant systems. For the proposed
tests, the plant dynamics is assumed to be unknown whereas the existing and new controller transfer
function matrices are known to the designer. These assumptions are common in iterative identification
and control redesign techniques. The performance improvement test methods proposed in this paper
build on the experimental set-up proposed in Dehghani, Lecchini, Lanzon, and Anderson (2009) which
was used to only check whether controllers ensure internal stability of a feedback interconnection or
not. In this paper, new test methods are proposed to ascertain robust performance improvement that
cannot be obtained from test results of Dehghani et al. (2009). A numerical example is illustrated to show

effectiveness of the proposed test methods.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In iterative identification and robust control redesign tech-
niques, a control systems engineer starts to identify the plant
model based on the closed-loop data to design a more attractive
controller so that the robustness of the closed-loop system is im-
proved while the existing known controller is replaced by the new
designed controller (Date & Lanzon, 2004; Gevers, 2000; Gevers,
Bombois, Codrons, Scorletti, & Anderson, 2003; Hjalmarsson, Gev-
ers, Gunnarson, & Lequin, 1998; Schrama, 1992). After inserting
the new controller in the closed-loop system, the identification
and controller redesign methods are repeated and it progresses
iteratively until a satisfactory level of performance is achieved
(Bitmead, 1993; Gevers, 2000, 2002; Schrama, 1992; Schrama &
Van Den Hof, 1992). However, appreciating that any identified
model will not be an exact representation of the actual physical
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plant present in the loop, this technique must always look for a
‘safe’ controller change which typically provides only bounds of
maximum allowable robust performance degradation (e.g. based
on some metric quantity the distance between the identified
plant and the unknown physical plant) and consequently robust
performance improvement may not be always possible to guar-
antee a priori (Anderson, 2004; Anderson & Gevers, 1998; Baldi,
Battistelli, Mosca, & Tesi, 2010; Bitmead, 1993; Dehghani, Lanzon,
& Anderson, 2004; Dehghani, Lecchini, Lanzon, & Anderson, 2009;
Gevers, 2002; Lanzon, Leccchini, Dehghani, & Anderson, 2006; Lec-
chini, Lanzon, & Anderson, 2006; Manuelli, Cheong, Mosca, & Sa-
fonov, 2007; Schrama, 1992). It is assumed that the currently active
controller internally stabilizes the existing closed loop. The plant
model, identified in present iteration from the available closed-
loop data, is hence close to the actual system in some sense, for
example as measured by a v-gap, as the existing known controller
simultaneously stabilizes the actual unknown plant as well as the
identified plant model. In the next step, an attractive new stabiliz-
ing controller, designed based on the identified plant model from
the previous iteration, is to be inserted into the closed loop. It too
must ensure internal stability with the actual plant. In Dehghani
et al. (2009), test methods based on the existing closed-loop data
are given to examine the potential of the attractive new controller
to stabilize the actual plant before inserting into the closed loop.
Dehghani et al. (2009) reduces the probability that a destabilizing
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controller will be switched into the loop which is undesirable in
‘safe’ iterative identification and control redesign techniques. For
‘safe control’, hence, it is always very important to check that the
newly designed controller that seems to be attractive before in-
serting into the closed-loop system is guaranteed to at least stabi-
lize the unknown plant (Anderson, 2004; De Callafon & Van Den
Hof, 1997; Hildebrand, Lecchini, Solari, & Gevers, 2005; Hjalmars-
son et al., 1998; Kammer, Bitmead, & Bartlett, 2000). Many data-
based internal stability tests in the literature are based either on
the parametric identification of the full order model of the current
closed-loop system or on the full estimation of frequency bounds
of magnitude of the current closed-loop transfer functions. In Baldi
et al. (2010) and Manuelli et al. (2007), the data-driven test func-
tions are used for choosing an appropriate controller in unfalsified
adaptive control. In Dehghani et al. (2009), an alternative set of ex-
periments was proposed to test internal stability of an apparently
attractive controller based on data-only experiments which do not
require the full frequency spectrum which prevent the possibility
of inserting a destabilizing controller in the closed-loop system.

However, although ensuring internal stability of a newly
designed controller on the unknown physical plant is a necessary
prerequisite to an iterative identification and control redesign
technique, it is not sufficient as it is important to ensure monotonic
robust performance improvement when the designer has one or
a set of attractive stabilizing controllers at hand. In this scenario,
although the available controllers are all stabilizing, the following
is an important question: which of these stabilizing controllers
will improve performance when the existing controller is replaced
by the newly chosen stabilizing controller? The present paper
gives an answer to this question by proposing novel test methods
based on closed-loop data. In this paper, the frequency response
is considered which is obtained from input-output frequency-
domain data. The swept sine test can also give the frequency
response, however, it is practically impossible to perform a
swept sine test at all frequencies. Hence, for sufficiently accurate
frequency response, it is assumed that the time duration and
the sampling rate are sufficiently large. It is also assumed that
the physical plant is linear time-invariant and is unknown to the
designer, whereas all controllers are assumed to be known. These
assumptions are common in iterative identification and control
redesign techniques. As the final objective of the design is to
achieve the highest level of robust performance of the closed-loop
system, it is important to insert a new controller that improves
the monotonically robust performance of the closed-loop system
and to this end, the proposed tests of this paper will enable this
objective.

The proposed tests build on the experimental set-up pro-
posed in Dehghani et al. (2009) where the tested controller is
implemented in coprime factorization form. This distinctive im-
plementation of the experimental set-up always gives a stable
input-output map for the experiments even if the new controller is
destabilizing. In this paper, we use the same experimental set-up as
in Dehghani et al. (2009) to propose new additional test methods
to ascertain robust performance improvement of the closed-loop
system that cannot be obtained from the tests in Dehghani et al.
(2009).

2. Notations and preliminaries

Let R denote the set of all real rational transfer function matri-
ces and RHL" be the set of all real rational stable transfer func-
tion matrices with m rows and n columns. Let a transfer function
matrix G € R, then «£,-adjoint system G*(s) denotes G(—s)T. Let R
and C denote the fields of real and complex numbers respectively.
Also let C_ and C_, respectively, denote the open and closed left-
half planes. Let A* denote the complex conjugate transpose of ma-
trix A. Let 6 (A) and o (A), respectively, denote the largest and the
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Fig. 1. Feedback interconnection of systems.

smallest singular value of matrix A. Let ||P|| .o denote the J#f,,-norm
of P € RH . The number wno(.) indicates the winding number
of a scalar transfer function evaluated on a standard D-contour in-
dented to the right around any imaginary axis poles (Vinnicombe,
2000). The nearest integer function nint|[.] returns the integer clos-
est to [.] with the additional rule that half-integers are always
rounded to even numbers. Let X be an inner product space, then
the inner product of X is denoted by (., .)x : X x X — R.
Consider the standard feedback interconnection of systems as
shown in Fig. 1 where P € "™ and C € K™ ". From the exoge-

. T T
nous input vector [0" d'] € C"™ to [y' u'] € C™™, the

transfer function matrix is H(P, C) = [1;] (I1—cp)y~'[-C 1].

Definition 1 (Vinnicombe, 2000; Zhou, Doyle, & Glover, 1996). The
interconnection [P, C] as depicted in Fig. 1 is well-posed if H(P, C)
exists, and furthermore [P, C] is said to be internally stable if it is
well-posed and H(P, C) € Ryl mm)

Note that, in four-block uncertainty structure the transfer func-
tion matrix from output to input of the uncertainty block is also
depicted by H(P, C) (Vinnicombe, 2000), and inverse of infinity
norm of this transfer function gives the robust stability margin of
the closed-loop system. This is also a measure for robust perfor-
mance which will be explained later in Section 3. For simplicity’s
sake, in this paper the dimension of the transfer function matrix is
not mentioned explicitly.

Definition 2. The ordered pair {N, M} where N, M € RH, is a
normalized right-coprime factorization (rcf) of P € R if M is in-
vertible in R, P = NM~!, and N and M are right-coprime over
RHoo and M*M + N*N = 1.

Definition 3. The ordered pair {U, V} where U,V € RH, is a
normalized left-coprime factorization (Icf) of C € R if V is invert-
ibleinR, C = V=10,and U and V are left-coprime over R # , and
VVE 4+ 00" =1L

Definition 4 (Vinnicombe: 2900). Given P, C € R.Let {N, M} be a
normalized rcf of P and {U, V} be a normalized Icf of C. Then G :=

[fw'] andK = [-U V] where G is referred to as the normalized

right graph symbol of P, and K is the r~10~rmalized inverse left graph
symbol of C and satisfy G*G = I and KK* = I.

Definition 5 (McGowan & Kuc, 1982). The unwrapped phase of a
transfer function is denoted by unwarg and refers to the phase
of the frequency response when it is in the form of a continuous
function of frequency.

The experimental set-up used in Dehghani et al. (2009)
is presented here which will also be used for testing robust
performance improvement, the main concern and key proposition
of this paper. For testing, the controller Cy is implemented in
‘observer form’ as depicted in Fig. 2(a) (Vinnicombe, 2000) using

. . . ~—1 ~
a left coprime factorization of the controller Co = Vo Uy where

the factor \707] is implemented in forward path and Uy is placed in
feedback path of the closed-loop system.
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Fig. 2. Experimental set-up.

If a controller is not already implemented in this observer form,
but simply implemented as in Fig. 1, then one could use the injec-
tion of exogenous signals w and d before and after the controller,
as shown in Fig. 2(b), to produce an equivalent observer form im-

plementation. Note that ();) are any stable transfer function (or
filters) that satisfy the Bézout identity with a left coprime factor-
ization of Cy (i.e. [— U Vo] [ ] I)—see Dehghani et al. (2009) for

details.

The plant transfer function P is assumed to be unknown but
available for data collection onto the physical closed loop. The
following theorem shows the necessary and sufficient conditions
for testing internal stability of a new alternative controller C;.

Theorem 6 (Dehghani et al., 2009; Lanzon et al., 2006). Given con-
trollers Cy, C; € R and assume [P Colis mtemally stable on a phys-
ical plant P € R. Let Cy = V Uo and C; = V U1 be left coprime
factorizations over RH o. Let T be the stable mapping r — z in
Fig. 2(a) or Fig. 2(b). Then the following statements are equiva-
lent: (1) [P, C1] is internally stable; (2) T™! € RHoo; (3) det T (jw)
# 0Vw and wno det T = 0; (4) det T (jw) # 0 Yw and unwrag
det T (joo) = unwarg det T (jO) where unwarg(.) denotes the un-
wrapped phase of a scalar transfer function as in Definition 5.

For the closed-loop data-based stability tests, the following two
assumptions were made:

@ssumptiop 1. The factors V, and V; are chosen such that
Vo(joo) = Vi(joo) = I.

Assumption 2. The transfer functions PCy and PC; are strictly
proper.

Assumption 1 is without loss of generality and Assumption 2
is very mild and can be easily satisfied in practice. The following
formal relation (see Lemma 11 in Dehghani et al., 2009) underpins
the main results of this paper.

Since

T = (K;G)(K,G) ™" (1)

then
T'=T-1=[-(0-0) h—-V)]
P(I — GyP)~ ~ .
X |: (I —C P)— ] (Kl KO)G(K()G) . (2)

From (1), we can rewrite T = V(I — GiP)(I — COP)”VO_l.
Then by Assumptions 1 and 2, it is evident that at high frequency
T tends to I, i.e. from (2), T’ is strictly proper. This trick simplifies
the experiment significantly and indicates that experiments need
not be performed on the whole frequency range to characterize
the closed-loop system T, but only up to some finite frequency
(i.e. bandwidth) wyg; see Dehghani et al. (2009) for detail.

3. Testing stabilizing controllers for robust performance im-
provement

In the previous section, an experimental set-up was described
(see Fig. 2(a) and (b)) for testing robust stability conditions. Once it
is known that the stability conditions are satisfied, an immediately
subsequent important question is raised: Does this stabilizing
controller improve robust performance of the closed-loop system
or not? In this section, new experiments are proposed to answer
this last question. We will use the same experimental set-up
as shown in Fig. 2(a) and (b) to test for robust performance
improvement.

We now define the robust stability margin (Lanzon & Papa-
georgiou, 2009; Vinnicombe, 2000) for the interconnected systems
shown in Fig. 1 as follows:

-1

b(P,C) = (3)
hen [P, C]is internally stable

0 otherwise.
Using normalized graph symbols, we can write
b(P, ) = |GKG) KN = IKE) ).

Hence the generalized robust stability margin b(P, C) can now be
equivalently represented as follows:

- -1\77!
[sup& <(K(ja))G(jw)> )}
info (K (ia))G(ia)))
w
when [P, C] is internally stable. Also define p(P(jw), C(jw)) = o
(K (jw)G(jw)) to be the pointwise in frequency generalized robust
stability margin. Note that, pointwise in frequency robust perfor-
mance p(P(jw), C(jw)) is always greater or equal to b(P, C), robust
performance over all frequencies.

The generalized robust stability margin b(P, C) is a measure
of robust performance, not just robust stability, of the closed-
loop system (Lanzon & Papageorgiou, 2009; McFarlane & Glover,
1992; Vinnicombe, 2000; Zhou et al., 1996). This is because the
closed-loop transfer function can be bounded in terms of this
number and weighting functions (McFarlane & Glover, 1992;
Zhou et al.,, 1996). A higher value of b(P, C) indicates a higher
level of robust performance. This means that when an existing
controller is replaced by a new attractive stabilizing controller
in the closed-loop system, an increase in b(P,C) implies an
improvement in robust performance. In this section, new test
methods will be proposed to check whether b(P, C) increases or
not so that we can ascertain whether robust performance improves
or not for the closed-loop system. Throughout this paper, we
denote the existing controller and the new attractive stabilizing
controller which we would like to test by, Co and C; respectively.
The performance improvement conditions are given here both
pointwise in frequency and over all frequencies.

b(pP, C)
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3.1. Performance improvement pointwise in frequency

Consider the experimental set-up shown in Fig. 2(a) or Fig. 2(b).
The transfer function matricesT : r + zand T' : r — (z —r) are
givenin(1)and (2), respectively, though neither of these two trans-
fer functions can be computed explncntly durmg the experiment as
P is not known to the designer. Here, K; and K are respectively
the normalized inverse left graph symbols of C; and Cy and G is the
normalized right graph symbol of P (see Definition 4). From the
above relation, we have (kl G) = T(I~(OG). Using singular value in-
equalities Green and Limebeer (1995), the above expression can be
rewritten pointwise in frequency as

o (T(jo))o (KoG(jw)) < o (KiG(jw))
& (T (jw))a (KoG(jw)). (4)

IA

3.1.1. Pointwise in frequency sufficient condition

Ifo (T(jw)) > 1 Vo, then o (K;G(jw)) > o (KoG(jw)) Yo, which
means we have pointwise improvementin p (P(jw), C(jw)). Check-
ing this sufficient condition pointwise in frequency is equivalent to
checking the condition: Z* (jw)Z(jw) > 7*(jw)T(jw) Yo, Vi (jo) €
C™, F(jow) # 0as o (A) = infes ”Hf}f”“z and ||x||2 = x*x.

3.1.2. Pointwise in frequency necessary condition

In order to have any hope for the desired pointwise in frequency
robust performance improvement to be achieved via an increase in
p(P(jw), C(jw)), we necessarily need o (T (jw)) > 1 Vw. Checking
this condition is equivalent to checking the condition: Vo,
I (jw) € C", F(jw) # 0 : Z*(jw)z(jw) > T*(jw)T(jw) as 6 (A) =

lAX]| 2 _
SUP,o ”X”; and ||x||5 = x*x.

Remark 1. The pointwise in frequency necessary condition is
easier to test than the pointwise in frequency sufficient condition
because for the necessary condition, one needs to find only one
pointwise signal 7 € C™, 7 # O that results in amplification of
signal norms, whereas for the sufficient condition one needs to
check that all signals ¥ € C™,  # 0 result in amplification of signal
norms.

3.2. Performance improvement over all frequencies

Inequality (4) implies (by taking the appropriate infimum and
supremum in the correct orders)

[info (TG | bP, o) < bep. Cr)
< [supr?(T(iw))} b(P, Co)

b(P, C
B b, ) < ITleb(P, o). (5)
1T~ oo
Since [P, Cy] and [P, C;] are both internally stable, from
Theorem 6 we have T, T~! € RH, where T and T’ are defined
in (1) and (2). Then, T~" : z > rand ||Tllcc = SUD;e£5[0.00).r0

lzll.c, T Irle,
IIerz and ”T ||oo - Supzeiz[o,oo),z;éo HZILCZ - Supre£2[0,oo),r;£0
::z::iz since T is a unit in RH , (i.e. bijective on /5[0, 00)).

2

3.2.1. Non-pointwise sufficient condition

If [T 'leo < 1, then b(P, C;) > b(P, Cy) which is the desired
improvement in robust performance. Checking this non-pointwise
sufficient condition ||T~'|lc < 1 is equivalent to checking the
condition: f0°o (z()*z(t) —r(O)*r(t))dt > 0Vr € £,[0,00),
r#0% |2l > Irlle,Vr € £[0,00). 1 #0.

a Im

/

o .4
A

Fig. 3. Complex plane.
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3.2.2. Non-pointwise necessary condition

For having any hope of achieving b(P, C;) > b(P, () (i.e. achie-
ving robust performance improvement), we need the necessary
condition ||T||» > 1. The test of this necessary condition ||T ||, >
1 is equivalent to testing the condition: 3r € £,[0, 00),1r # 0 :
fooo (z(®)*z(t) —r(®)*r(t))dt > 0 & Ir € L,[0,00),7 # 0 :
Izll.c, > 17z,

Similar to Remark 1, it is worth noting that the necessary
condition is easy to test because it involves finding just one (any)
energy bounded input r which achieves signal amplification. This
is in contrast with the sufficient condition which requires checking
that signal amplification occurs for all bounded-energy inputs r.

The following necessary and sufficient result in a SISO setting
allows us to check a priori robust performance improvement for
a new stabilizing controller C; if it were to be inserted into the
closed-loop system and all the tests performed without actually
replacing Cy by C;.

Theorem 7. Let the suppositions of Theorem 6 and Assumptions 1
and 2 hold and furthermore, T~! € RH o, and defineZ’ = Z—7. Then
IT(w)| > 1 & |Z/(jw)| > 2|F(jw)| cos[t — (LZ'(jw) — LT (jw))].
Consequently, {w : T(jw) > 1} = {w : |Z/(jw)| > 2|F(jw)| cos[r —
(LZ'(jw) — LT (jo)]}-

£3[0, 00) — £[0, 00) _ .
g andT_I—e—T/thenT/.
£2[0, 00) = £2[0, 00)

Y which yields T'(jw) = % G
IT(w)| > 1 & |1+ T (jw)| > 1.

Now via Fig. 3(c), it is simple trigonometry to show that |T (jw)|
=1 [1+T(w)| =14 1=1+|T(jw)|> —2|T (jw)| cos(r —
0) for0 = (T'(jw) = [Z'(jw) — LF(jw) € (F,7) OR (=7, %)
(via cosine rule for triangle) < |Z/(jw)| = 2|F(jw)| cos[m — (£Z' (jw)
— /T (jw))]. The result then follows. O

Proof. Since T :

and consequently

Corollary 1. Given the suppositions of Theorem 7. Then the following
two statements hold: (a) |T (jw)| > 1if |/Z'(jw) — (F(jw)| < Z;
(0) IT(w)| > 1if |Z'(jw)| > 2|7 (jw)|.

Proof. Trivial via Theorem 7 statement on Fig. 3(a) and (b). O

This theorem gives the necessary and sufficient condition for
improvement in b(P, C) that in turn indicates the improvement of
robust performance as well as the robust stability margin. Note
that the above theorem is only applicable to SISO linear time-
invariant systems. In the following theorem, sufficient conditions
for robust performance improvement are given for MIMO linear
time-invariant systems.

Theorem 8. Let the suppositions of Theorem 6 and Assumptions 1
and 2 hold and furthermore, T~! € RH o, and define T’ = T — I.
Then o (T (jw)) > 1if o (T'(jw)) > 2 or T'(jw) + T'(jw)* > 0.

Proof. Two sufficient conditions are proved separately as follows:

(a) Notethat o(T) = o (I + T') > o(T") — 1. If o (T' (jw)) > 2,
then o (T (jw)) > 1.
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(b) Note that T*T = (I +T)*(I+T') =1+ T +T™* + T™*T'. Since
T (jw)*T' (jw) > 0,if T'(jw) + T'(jw)* > 0, then T*T > I, i.e.,
o(T(w)) > 1. O

In the above theorem, two sufficient conditions are presented
for pointwise in frequency improvement of b(P, C) for MIMO linear
time-invariant systems. However, the first condition is impossible
to satisfy when the controller change is small whereas the second
condition can still be rather easily be fulfilled. The second condition
also has a profound philosophical implication—that as long as the
controller change is in the correct direction, then the controller
change does not need to be small. Indeed, it can be arbitrarily large
in the correct direction of fulfillment of T’ (jw) + T’ (jw)* > 0 and
robust performance improvement is still guaranteed. Checking the
second condition is equivalent to check a necessary and sufficient
condition which is presented in the following theorem.

Theorem 9. Let the suppositions of Theorem 6 and Assumptions 1
and 2 hold and furthermore, T~! € RH . Given T = (K;1G) (KoG) !
andT' =T — I. Then T (jw) + T'(jw)* > (>)0 if and only if

(K1G)* (K1 G) (jw) — (KoG)* (KoG) (jew)
> (2)[(K; — Ko)GI*[(K; — Ko)Gl(jew). (6)

Proof. This theorem is proved via sequence of equivalent steps:
T'(jw) + T'(jw)* > 0 & T(jw)* T(jw) —1 > T (jw)*T (jo) &
(KoG) 7 (KiG)* (KiG) (KoG) ™" — T > (KoG) *[(Ky — Ko)GI*[(Ky —
Ko)Gl(KoG)~'. O

In inequality (6), the right hand side is related to the size of the
controller change and the left hand side is the difference between
the new and the old robust stability margins. This condition states
that for the controller change to yield a change in the positive-real
direction (i.e. T'(jw) + T’ (jw)* > 0) which then guarantees robust
performance improvement, we need the controller change to be
such that it has larger impact on the increase in b(P, C) than it has
on the size of the transfer function T’ (jw). This is needed so that the
left hand side is greater than the right hand side in inequality (6).

In safe adaptive control, if one is close to the critical Nyquist
point and also has no information on which direction to perform
a controller change, it is always better to make small changes on
the controller. These kinds of results then can only give a lower
bound on the maximum performance degradation and we often
are content with this as an acceptable compromise to safe adaptive
control algorithms and use this kind of argument to justify why
one should make small steps so that we do not inadvertently lose
stability. But if one is not completely lacking all information and
can perform the tests in this paper, then there is a large set of
directions where huge controller changes are perfectly acceptable
and indeed yield performance and stability margin improvement.
This means we are allowed to take arbitrary huge steps that satisfy
condition (6), which corresponds to a step in the positive-real
direction and still attain robust performance improvement. Note
that this is equivalent to (z/, r)ec2 >0Vr e Lowherez =z —r
andz = Tr.

4. Closed-loop data-based tests for performance improvement

In Theorem 7, necessary and sufficient conditions are given for
SISO linear time-invariant systems to improve robust performance
when an existing controller is replaced by a new attractive
stabilizing controller in the closed loop. For the same objective,
in Theorem 8 a sufficient condition is given for MIMO linear
time-invariant systems. It is however practically unrealistic to
perform experiments for all frequencies as well as for all signals
in £ space to check such conditions. To circumvent this difficulty,

experimental procedures are proposed in this section based on the
closed-loop set-up shown in Fig. 2(a) or Fig. 2(b).

In Dehghani et al. (2009) (see Theorems 10 and 12), two
novel experiments have been proposed based on closed-loop
measured data to validate controllers for internal stability. The first
experiment proposed in Dehghani et al. (2009) was a falsification
test for internal stability and interestingly, the same falsification
test data collected during the experiment can be reprocessed to
also check for robust performance improvement of the closed-loop
system. This experiment significantly reduces the experimental
effort as well as utilizing an extremely simple test procedure.

We construct Z by following Dehghani et al. (2009) based on the
experimental set-up shown in Fig. 2(a) or Fig. 2(b). If det Z < 0,
then the controller does not internally stabilize the closed loop.
Assuming that internal stability of the new attractive controller
has already been established via the tools and experiments in
Dehghani et al. (2009) and Lanzon et al. (2006), we can then
use Z to check whether this stabilizing controller will improve
b(P, C) of the closed-loop system. Note that, for both SISO and
MIMO linear time-invariant systems, a sufficient condition for
improving b(P, C) is the positive-realness of T" where T' =T — I.
In this regard, the following test for positive-realness of T’ at low
frequency is useful.

Theorem 10. Let the suppositions of Theorem 6 and Assumptions 1
and 2 hold and furthermore, T™! € RH .. Let e; denote a reference
signal where a step is applied at the ith input while the other inputs
are kept as 0. Perform n experiments with reference signal r(t) =
ei(t), i = 1,...,nand let z; be the steady state output of the map
T : r — zrecordedin each experiment. DefineZ = [z, ..., z,]. Then

Jw; > 0: T'(jw) + T'(jw)* > 0Vw € [0, w1] < Z+ZT > 21

Proof. WehaveT =1+4T’ and Z = T(0). Hence, T'(0) + T'(0)* =
T(0) +T(0)* — 21 = Z +ZT — 2I. The result then follows by noting
that T'(jw) is a continuous function of w. O

If Z +Z" # 2I, then T'(jw) cannot be positive-real for all fre-
quencies. Since the positive-realness of T’ is a sufficient condition
for robust performance improvement, one cannot imply anything
about the improvement of b(P, C) or not when the above test con-
dition fails. However, fulfillment of the above test condition guar-
antees the improvement of robust performance at zero frequency
and its neighborhood.

To check the conditions of Theorems 7 and 8, an experiment
will be performed up to the frequency wy such that |T’| is much
smaller than unity for all ® > wy. Since T = I + T’, the collected
closed-loop data up to the frequency wg will be sufficient to char-
acterize the required properties onto the system T as |T| ~ 1 when
IT'| < 1.

It is indeed correct that positive-realness of T’ is a sufficient
condition for performance improvement. If one contends that an
appropriate, though possibly conservative, test for performance
improvement is positive-realness of T’, then one seeks to find ways
of checking whether positive-realness of T holds or not.

Positive-realness is a condition that needs to be checked on the
full frequency axis. The approach we take in this paper is to split
the full frequency axis in subparts and apply ‘easier’ to compute
conditions on each subpart. Any test on a sub-frequency region will
not be sufficient to infer positive-realness of T/, but when all tests
on all sub-frequency regions are jelled together, the tests can cover
the full frequency axis. It is also not the case that the boundaries of
the tests for each sub-frequency region be known exactly. Quite
to the contrary, the only requirement is that the tests together
cover the full frequency axis and hence there can be considerable
conservativeness in the estimation of the frequency boundaries for
each sub-frequency region test.
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5. Simulation example

Although the proposed experiments are based on the unknown
plant, for simulation purposes, the plant transfer function is
considered as known. We consider the SISO example which was
presented in Dehghani et al. (2009) to validate controllers for
internal stability. For the same example, test methods proposed in
this paper will be performed to check whether the new controller
also improves performance when it is to be inserted into the
closed-loop system. The tests performed use the existing feedback
interconnection with the old controller and determine whether
performance improvement will happen or not before it is actually
inserted in the feedback loop.

Let a SISO plant which is not known to the designer be given by

__ —186.66(s—5)(s+4.5) i
P = 102617 616) . A stabilizing controller

~0.021(s + 10.92)(s + 8.87)(s + 7.31)(s + 5.93)
07 7 (2 +8.65 + 19.84)(s2 — 0.603s + 5.34)

is physically connected to the plant in closed loop. In Dehghani
et al. (2009), it is shown that an attractive new controller

o 0.33(s + 0.586) (s + 2.99) (s + 3.416)

' (s + 2)(s? + 2.265 + 3.52)

also ensures internal stability of the closed-loop system if Cy were
to be replaced by C; and this conclusion is drawn on the basis of
data collected via experiments performed on the closed loop of the
unknown plant P and the original controller Cy, without inserting
C; in the feedback loop, using C; to only filter the collected data
instead (see Dehghani et al., 2009 and Lanzon et al., 2006 for
details). Left coprime fagtors over RH , of the known controllers

are, respectively, Co = VO’W}O and C; = \7{101 where
- (s* 4 8.603s + 19.84) (s> — 0.602s + 5.34)
©7 (2 + 8.64s + 19.97)(s? + 1.83s + 6.96)
by — 0.021(s + 10.92)(s + 8.87)(s + 7.31)(s + 5.93)
(s2 4 8.64s + 19.97)(s? + 1.83s + 6.96)
7 - (s + 2)(s® 4 2.265 + 3.52)
(s + 1.87)(s® +2.81s +3.712)°
g, — 0.33(s + 0.586) (s + 2.99)(s + 3.416)
(s + 1.87)(s> + 2.81s + 3.712)

)

Vo and V; satisfy the Assumption 1. Assumption 2 is automatically
satisfied due to strictly proper P and proper controllers. To check
performance improvement, we do the following experiments.

(a) Falsification test: For the experimental set-up shown in Fig. 2(a)
or Fig. 2(b), we record steady state response at the output when
theinjected inputis a unit step and it is observed thatZ = 5.68.
Since Z + Z" > 2I, this test does not falsify the necessary and
sufficient condition for strictly positive-realness of T’ at DC
and its neighborhood frequency. Consequently, no conclusion
can be drawn and more experimental effort is required in this
case to determine whether this new controller improves robust
performance or not.

(b) In the experimental set-up shown in Fig. 2(a) or Fig. 2(b),

we do a sine-sweep starting from DC frequency and the
corresponding magnitude plot of T’ is shown in Fig. 4. Notice
that the exact plot is irrelevant as we need only some key
properties and points on this curve to characterize the transfer
function T. Beyond 30 rad/s, |T'| ~0and so |T|~1asT =
I 4+ T'. This means we only need to test up to approximately
30 rad/s.
Also, if the sine-sweep confirms confidently that |[T’| > 2 up
to approximately 0.9 rad/s, as indeed depicted in Fig. 4, then
we know via Corollary 1 that up to 0.9 rad/s we have robust
performance improvement.

Magnitude
n

» i i i
10° 107" 10° 10' 10 10

Frequency (rad/s)

Fig. 4. Magnitude plot of T'.

A
16 rad/s

1 o 1 2

10 10 10 10
Frequency (rad/s)

A
’W‘
-1 L

Fig. 5. Re[Z'(jw)*T(jw)] vs. frequency.

| 19.9rads | 1]

10 107 10° 10’ 10° 10
Frequency (rad/s)

Fig.6. |T'(jw)| — 2 cos(w — LT’ (jw)) vs. frequency.

(c) From the sine-sweep data beyond 0.9 rad/s, compute also

Re[Z' (jw)*T (jw)]. This is plotted in Fig. 5. The exact frequency
plot is irrelevant as the information that needs to be extracted
only uses a few key data points.
From this experiment, we can confidently conclude that there
is robust performance improvement also in the frequency
range (1.5, 16 rad/s) as Re[Z' (jw)*7 (jw)] > 0 in this frequency
range implying T’ (jw) + T’ (jw)* > 0.

(d) Consequently, robust performance improvement is guaranteed
in [0, 0.9 rad/s) and (1.5, 16 rad/s) via the preceding tests.
The question of whether robust performance improvement
happens also in the frequency intervals [0.9, 1.5 rad/s] and [ 16,
30 rad/s] cannot be answered without the precise data having
experimental effort related to Theorem 7 as in Fig. 6. From
the precise data, it is evident that the robust performance will
be improved in the frequency range [0, 19.9 rad/s), while the
proposed test methods give the ranges [0, 0.9 rad/s) and (1.5,
16 rad/s), and hence the methods are not very conservative.
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6. Conclusions

In this paper, conditions are derived for robust performance
improvement based on the closed-loop data when an existing
controller is replaced by an attractive new stabilizing controller
in the feedback loop. The results are applicable to both SISO
and MIMO linear time-invariant systems. For the proposed
tests, the plant model is assumed to be unknown. Such an
assumption is common in iterative identification and control
redesign techniques. A sufficient condition is derived for robust
performance improvement that shows that as long as the
controller change is done in the positive-real direction, such
a controller change can be of an arbitrarily large size. This is
contrary to common wisdom adopted in the mainstream adaptive
control literature where small controller changes are adopted in
order for such a controller change to be cautious or safe. The
experimental set-up used in this paper is identical to (Dehghani
etal., 2009; Lanzon et al., 2006); however, the proposed conditions
for robust performance improvement cannot be obtained from the
test results of Dehghani et al. (2009) and Lanzon et al. (2006)
directly. The numerical example in this paper demonstrates the
applicability of the proposed test conditions.
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