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Abstract -- The design and implementation of a robust 
multivariable model predictive control (MPC) on a quadruple 
tanks system is addressed in this paper. Mismatch between the 
MPC’s model and the process may cause constraint violation, 
non-optimized performance and even instability. It is the 
objective of this paper to offset-free control the process in the 
presence of constraints and model mismatch. It is shown in this 
paper how this model mismatch is compensated by augmented 
state disturbances, and also how the steady state error is 
eliminated. In the proposed method, an observer is designed to 
estimate the disturbances and states. The results show how the 
proposed control method increases the robustness of the model 
predictive controller in simulation and in real time 
implementations on a new quadruple tanks system proposed in 
this work together with techniques designed to identify the 
parameters of this novel plant. 
 

Index Terms-- Model Predictive Control, Offset-free Control, 
Robust Control, Parameter Uncertainty. 

I.   INTRODUCTION 
Closed-loop performance of systems controlled by model 

predictive controller depends on model’s accuracy and 
disturbances. In practice, model mismatch and unmeasured 
disturbances can lead to a steady-state offset unless 
precautions are taken during the control design. There exist in 
the literature a number of optimization programming 
algorithms for offset free MPC, [1-3]. These algorithms, 
however, each considers different disturbances models and 
makes different assumptions in order to guarantee offset free 
control. Since there are different mismatch models or 
unmeasured disturbances, closed loop performance is 
sensitive to the type of disturbance model used for a given 
plant [4, 5]. Generally three basic methods are presented in 
order to eliminate the steady state offset. The first approach 
incorporates the integration of the tracking error with the 
process model. The drawback of this method is that the 
increase in the number of state variables due to the 
augmentation increases the computational cost of the 
optimization problem, especially in large scale systems. The 
requirement of an anti-windup system is the second drawback 
of this method. The second approach involves a velocity form 
of a state-space model to achieve offset-free control. The 
main disadvantage here is that the state’s dimension is 
increased, which in turn increases the computational cost in 
the dynamic optimization. The third approach involves 
modifying the plant model to include a disturbance model. 

These disturbances can be estimated from the measured 
process output if the augmented system is observable. The 
augmented disturbance can be constant, ramp, periodic or 
stochastic [6], but in most cases, it is assumed to be constant. 
In order to eliminate the effects of the estimated disturbances, 
a target generator is used to modify the steady state target for 
the controller. As a result, zero steady-state offset output 
tracking is obtained by a linear MPC if the process is not 
strongly nonlinear over a wide range. Although this approach 
eliminates anti-windup requirements, its disadvantage is the 
demand for designing a disturbance model and an estimator. 
The demand for an observer makes the controller inapplicable 
to unstable processes because the observer poles contain the 
unstable poles of the process model. On the other hand, a 
system with a disturbance model may lead to unacceptable 
performances if a disturbance enters the process from 
somewhere else.  

In this research, an enhanced scheme based on the third 
method is developed to design an offset-free model predictive 
controller. Although the third method generally uses both the 
state disturbances and output disturbances, it is shown in this 
paper that for a class of processes, employing only state 
disturbances satisfies the conditions that approaches offset-
free control. As the result of eliminating the output 
disturbances in the proposed method, the computational time 
needed to solve multi parametric programming should be 
significantly reduced.  

This paper also introduces a new type of nonlinear MIMO 
system; a modified quadruple tanks system (QTS). The plant 
is used to verify the proposed method and an offset free MPC 
control algorithm is designed for the system. The theory is 
then verified by simulation and real time implementation. For 
this purpose, a laboratory QTS is built and equipped with 
sensors, actuators, and data acquisition hardware. The system 
is interfaced and controlled by a PC equipped with 
LabVIEW®. MATLAB® is also installed and used to solve 
the multi-parametric program. In this paper, parameter 
identification techniques for the proposed QTS were also 
developed.  

Classical QTS configurations consist of two upper tanks 
and two lower tanks. Many researchers simulated classical 
QTSs as a nonlinear multivariable benchmark to illustrate the 
benefits of their proposed controller algorithms. For instance, 
[7] proposed a sliding mode controller and applied it on a 
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classical QTS to verify his design. In [8], a classical QTS is 
used for verification of a proposed decentralized robust 
control. In [9], the classical QTS is controlled by distributed 
model predictive control. In these studies, many nonlinear 
and time varying properties of the classical QTS were not 
considered in simulations. These system perturbations appear 
all the time during experimental testing, especially when 
variable tests are performed. A few researchers verified their 
proposed control algorithm on an experimental QTS [10-13]. 

The modified QTS configuration is introduced in this paper 
to increase the nonlinearity aspect of the process. The 
difference between the classical and modified configurations 
is that in the new configuration all the four tanks are adjacent 
to each other. This affects the dynamics of the plant such that 
the dynamic equations of the modified configuration include 
more intense nonlinearity. Figure 1 illustrates the two 
configurations; Fig. 1(a) shows the classical QTS 
configuration while Fig. 1(b) shows the modified 
configuration used in this paper.   

 

 
Fig. 1 Schematic of quadruple tanks system; (a) classical configuration, and 

(b) modified configuration.  

II.   QUADRUPLE TANKS SYSTEM AND EXPERIMENTAL 
SET-UP 

The quadruple tank system is a multivariable process that 
has been used to show the results of different control 
strategies. The aim is to control the tank’s water levels while 
simultaneously eliminating the water level offsets. As 
illustrated in Fig. 1(b), the water is pumped to tanks T1 and T4 
by pump A, and to tanks T2 and T3 by pump B. A reservoir is 
located below the tanks to collect the outgoing water from 
tanks T2 and T4. There is also a hole in the wall between 
tanks T1 and T2, with a cross section of 𝑎1, and another in the 
wall between the tanks T3 and T4, with a cross section of 𝑎3. 
There are also two outlet holes, one in T2 with a cross section 
of 𝑎2  and one in T4 with a cross section of 𝑎4 , that direct 
water to the reservoir. The valves V2 and V3 adjust the rate of 
water flowing into T2 and T3. Valves V1 and V4 are 
responsible for similar adjustments, which determine the rate 
of water flowing into T1 and T4. The valves are fixed, and are 
unchanged throughout the experiment. 

Figure 2 shows the experimental quadruple tanks system 

that is constructed for this work in the Center for Research on 
Applied Electronics at the University of Malaya. 

 
Fig. 2 Experimental set-up of a quadruple tank system. 

The level of water in each tank is measured by a 
differential pressure measurement sensor. A vertical solid 
pipe is installed in each tank, with an open lower end, and its 
upper end is connected to its dedicated differential pressure 
sensor via a flexible pipe. When the water level in the tank 
increases, the volume of the air in the pipe will decrease, 
inevitably increasing the air pressure in the pipe. The 
differential pressure sensor measures the pressure difference 
between the pipe and the room’s air pressure, and produces 
an output current of 4-20 mA. 

The data acquisition system used is USB-4716 from 
ADVANTECH, a multifunction module consisting of analog 
and digital inputs and outputs. A 220Ω resistor converts the 
output current of the pressure sensor to a voltage signal 
measurable by an analog to digital converter. The 
multifunction module is connected to the USB port of a 
computer, and the measured data is transferred to the PC 
every four seconds. Figure 3 shows the water level sensor and 
the data acquisition hardware. 

A.   Nonlinear model 
The nonlinear model of the QTS is obtained by Mass 
balances and Bernoulli’s law as in (1), where the system's 
constraints, have been identified by analysing the physical 
dimensions of the system and its limits.  
 
𝑑ℎ1
𝑑𝑡

= −
𝑎1
𝐴1
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𝛾𝑎
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(1) 

where ℎ𝑖 is the water level and 𝐴𝑖 is the cross-section of tank 
Ti,  𝑖 = 1⋯ 4. The flows of water, pumped by Pa and Pb, are 
denoted by 𝑞1 and 𝑞2 respectively.  
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Fig. 3 Sensors and data acquisition hardware. 

For tanks' heights (ℎ1 , ℎ2 , ℎ3 , and ℎ4 ), the minimum 
constraint would be the minimum level of the water in the 
tank that cannot flow out of the tank and the maximum 
constraint would be the maximum level of the water after 
which water will overflow from the tank. As for the flow 
constraints ( 𝑞1  and 𝑞2 ), the minimum was decided 
experimentally by identifying the minimum flow that does 
not cause any bubbles in the system. The maximum flow 
constraint is the maximum flow that the pump can produce. 

The rate of water flow of tanks T4 and T1 is denoted by 𝛾𝑎 
and the rate of water flow of tanks T2 and T3 is denoted by 𝛾𝑏. 
The adjustments of the valves determine the values of 𝛾𝑎 and 
𝛾𝑏.  

B.   Parameter identification 
The cross sections of the tanks are easily measured by 

measuring its physical dimensions, but the effective values of 
the cross sections of outlets of the tanks (𝑎1,⋯ , 𝑎4) are not 
easily measured. Contrary to 𝑎1 and 𝑎3 that are fixed, 𝑎2 and 
𝑎4 are adjustable via the valves placed at the outlets of tanks 
𝑇2 and 𝑇4.  

The most accurate measurement method for cross areas of 
the outlets is parameter identification using input-output data. 
The process is modeled by a gray box consisting of the 
nonlinear model presented in (1) with unknown parameters 
𝑎1,⋯ , 𝑎4 . Since it is a nonlinear multivariable model, the 
general method for 𝑎1,⋯ , 𝑎4  parameter estimation is too 
complex. In order to simplify the estimation method, we used 
a technique that converts the multivariable system with four 
unknown parameters to four systems, each having only one 
unknown parameter. This experimental technique is 
described in the remainder of this section. 

The objective of the first experimental technique is to 
estimate 𝑎2 and 𝑎4 . The quadruple tank system built during 
the course of this project is designed such that there is a 
removable common wall between tanks 𝑇1 and 𝑇2. When the 
common wall is removed, tanks 𝑇1 and 𝑇2 are converted into 
one tank, with a cross section 𝐴1 + 𝐴2 . First, this tank is 
filled with water. While no more water is poured into the tank 
(as pumps are off), and the water is going out through the 
outlet to the reservoir, the data acquisition hardware starts 

recording and saving the signal of the water level sensor 
located in tank 𝑇1 . The dynamic equation of this system is 
described by (2):                                       
𝑑ℎ
𝑑𝑡

= − 𝑎2
𝐴1+𝐴2

�2𝑔ℎ (2) 

where ℎ is the water level in the merged tank,  𝐴1 + 𝐴2 is the 
cross section of the merged tank, g  is the gravitational 
acceleration, while 𝑎2 is the cross section of the outlet of tank 
𝑇2.  

The underlying problem is to estimate 𝑎2  using (2), and 
acquire the water level ℎ.  The least mean square method is 
used to obtain the optimum value of 𝑎2  that most closely 
matches the model represented by (2) for the water level data. 
The optimum value for 𝑎2  was determined to be 𝑎2 = 6 ×
10−6𝑚2. 

A similar experiment on tanks 𝑇3 and 𝑇4 is carried out to 
estimate 𝑎4, and a value of 𝑎4 = 6.7 × 10−6𝑚2 is determined 
to be the optimum value that produces the best match for the 
model and the acquired data. 

The second experimental technique is designed to estimate 
𝑎1  and 𝑎3 . Here, the process is simplified to a zero input 
single output process. Tank 𝑇1  is filled by pump 𝑃𝑎 , while 
pump 𝑃𝑏  is off and the outlet of tank 𝑇2  is shut. When the 
water level in tank 𝑇1 is high enough, pump 𝑃𝑎 is turned off 
and data logging starts until the water level in both 𝑇1 and 𝑇2 
are the same. Figure 4 shows the simplified schematic of the 
process when both pumps are off. During the data logging, 
the dynamics of the process can be modeled as,  
𝑑ℎ1
𝑑𝑡

= − 𝑎1
𝐴1
�2𝑔(ℎ1 − ℎ2) (3) 

where ℎ1  and ℎ2  are the water levels in tanks 𝑇1  and 𝑇2 , 
respectively. 

The least mean square method is used to obtain the 
optimum value for 𝑎1  that most closely matches the model 
(3) to the water level data. The optimum value for 𝑎1  was 
determined to be 𝑎1 = 8.5 × 10−6𝑚2 . A similar method is 
used to estimate 𝑎3. Table 1 shows the parameter values of 
the quadruple tanks system, which is constructed for this 
project. 

 
TABLE I  

PARAMETER VALUES OF THE QUADRUPLE TANK SYSTEM 
Parameter Value Unit 

𝐴1 0.0033 m2 
𝐴2 0.0033 m2 
𝐴3 0.0033 m2 
𝐴4 0.0033 m2 
𝑎1 8.5 × 10−6 m2 
𝑎2 6 × 10−6 m2 
𝑎3 8.5 × 10−6 m2 
𝑎4 6.7 × 10−6 m2 

𝑔 9.8 m/s2 
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Fig. 4 Experiment to estimate a1. 

 
In addition to the parameters defined in Table 1, there are 

two uncertain parameters, 𝛾𝑎  , 𝛾𝑏 . Their nominal values are 
𝛾𝑎 = 0.25 and 𝛾𝑏 = 0.25. 

 

C.   Steady state analysis 
At steady state, since the levels of water in the tanks 

remain constant, we have: 
𝑑ℎ𝑖
𝑑𝑡

= 0    𝑖 = 1⋯ 4 (4) 

In this state, the inputs should be constant. Therefore, with 
the justifiable conclusion that inputs are constants, one can 
use (4) in (1) and obtain the steady state water levels, 

ℎ10 = ((
(1 − 𝛾𝑎)

𝑎1
𝑞10)2 + (

1 − 𝛾𝑎
𝑎2

𝑞10 +
𝛾𝑏
𝑎2
𝑞20)2) (2𝑔)�  

ℎ20 = (
(1 − 𝛾𝑎)

𝑎2
𝑞10 +

𝛾𝑏
𝑎2
𝑞20)2 (2𝑔)�  

ℎ30 = ((
(1 − 𝛾𝑏)

𝑎3
𝑞20)2 + (

(1 − 𝛾𝑏)
𝑎4

𝑞20 +
𝛾𝑎
𝑎4
𝑞10)2) (2𝑔)�  

ℎ40 = (
(1 − 𝛾𝑏)

𝑎4
𝑞20 +

𝛾𝑎
𝑎4
𝑞10)2 (2𝑔)�  

  (5) 

where the steady state water level in tank Ti is denoted by 
ℎ𝑖0 , 𝑖 = 1⋯ 4 , and the final values of flow of water, 
pumped by Pa and Pb, are denoted by 𝑞10 and 𝑞20 respectively.  
 

D.   Linear model 
The linearized model at a given steady state operating 

point is determined by using the approximate equation, 

�ℎ1 − ℎ2 ≅ �ℎ10 − ℎ20 + (ℎ1−ℎ2−�ℎ1
0−ℎ2

0�)

(2�ℎ1
0−ℎ2

0 )
 (6) 

The state and input variables are defined as below: 

𝑥𝑖 ≜ ℎ𝑖 − ℎ𝑖0  ,𝑖 = 1,⋯ ,4   

𝑢𝑖 ≜ 𝑞𝑖 − 𝑞𝑖0  ,𝑖 = 1,2 
   (7) 

The continuous linear state space matrices are defined as 
(9), where 

𝜏1 = 𝐴1
𝑎1
�2(ℎ1

0−ℎ2
0)

𝑔
, 𝜏2 = 𝐴2

𝑎2
�2ℎ2

0

𝑔
 

𝜏3 = 𝐴3
𝑎3
�2(ℎ3

0−ℎ4
0)

𝑔
, 𝜏4 = 𝐴4

𝑎4
�2ℎ4

0

𝑔
 

(8) 

𝑑𝑥(𝑡)
𝑑𝑡

=

⎣
⎢
⎢
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⎢
⎢
⎡
−1
𝜏1

1
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0 0
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0 0 −1
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1
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0 0 𝐴3
𝐴4𝜏3
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𝐴4𝜏3⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑥(𝑡) 

            +

⎣
⎢
⎢
⎢
⎢
⎡
1−𝛾𝑎
𝐴1

0

0 𝛾𝑏
𝐴2
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𝐴3

𝛾𝑎
𝐴4

0 ⎦
⎥
⎥
⎥
⎥
⎤

𝑢(𝑡) 

𝑦(𝑡) = 𝑥(𝑡) 

(9) 

The discrete state space is obtained using the sampling 
period 𝑇𝑠 = 1 𝑠𝑒𝑐 and the parameter values given in Table 1 
around the steady state operating point: 

𝑞10 = 8.33 × 10−6  𝑚3/𝑠 

𝑞20 = 7.5 × 10−6  𝑚3/𝑠 

ℎ10 = 0.166 𝑚 

ℎ20 = 0.115 𝑚  

ℎ30 = 0.099 𝑚 

ℎ40 = 0.058 𝑚 

(10) 

The linear model of the QTS around the steady state 
operating point (10) is obtained as: 

𝑥(𝑘 + 1)

= �

0.9815 0.0184 0 0
0.0184 0.9711 0 0

0 0 0.9795 0.0203
0 0 0.0203 0.9601

� 𝑥(𝑘)  

                   + �

225.2 0.7031
2.109 74.65

0.7778 224.9
74.23 2.333

� 𝑢(𝑘) 

𝑦(𝑘) = 𝑥(𝑘) 

(11) 

The water level should be less than the height of the tank, 
and the tanks should not be empty. Since the water level 
sensors cannot sense a water level of less than 2 cm, the 
minimum water level threshold is set to be 2 cm. The 
maximum value of input is constrained by the maximum 
power of the water pumps, while the minimum value of input 
is set to obtain enough water pressure to prevent gas bubbles 

Tank 1 Tank 2
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creation in the pipes. Therefore, the constraints on the 
quadruple tanks system is summarized as, 

0.02 < ℎ1 < 0.19  

0.02 < ℎ2 < 0.19 

0.02 < ℎ3 < 0.19 

0.02 < ℎ4 < 0.19 

4.15 × 10−6 < 𝑞1 < 13.85 × 10−6 

4.15 × 10−6 < 𝑞2 < 13.85 × 10−6 

(12) 

III.   PROPOSED OFFSET-FREE MODEL PREDICTIVE 
CONTROL 

The main goal here is to control the level of the tanks T2 
and T4. Offset-free techniques are employed to eliminate the 
steady state error. As a result, the robustness of the closed 
loop system against step-like disturbances and noisy 
measurement is tremendously improved. 

In this paper, we only consider the state disturbance, and 
will show that the state disturbance model is capable of 
eliminating the offset created by the model’s mismatch. Thus, 
the augmented model, including its state disturbance, is 
considered to be: 

�𝑥(𝑘 + 1)
𝑑(𝑘 + 1)� = �𝐴 𝐵𝑑

0 𝐼 � �
𝑥(𝑘)
𝑑(𝑘)� + �𝐵0� 𝑢(𝑘) 

𝑦(𝑘) = [𝐶 0] �𝑥(𝑘)
𝑑(𝑘)� 

        (13) 

In order to compute the model predictive control signal, in 
each sampling period, first, the state and disturbance are 
estimated. A stable observer is necessary to estimate the 
unmeasured (in the case where disturbance is applied to the 
system) or virtual (in the case where virtual disturbance is 
used to compensate the model mismatch) disturbances. If it is 
not possible to measure all the states, the observer should 
make an appropriate estimate.  

The main idea is to estimate the target values of system 
states and inputs. These will be used in a new system where 
the states are the difference between the states and the target 
states and the inputs are the difference between the inputs and 
the target inputs (δ𝑢). The constraints should be updated for 
this new system. Using model predictive techniques, 
optimum δ𝑢 can then be obtained. Finally, the optimum input 
is calculated.  

For this estimation to take place, the model needs to be 
observable. Observability conditions for the model of 
equation (13) are given in the following proposition: 

 
Proposition 1. The augmented system (13) is observable if 

and only if (𝐴,𝐶) is observable, and 𝐵𝑑  has a full column 
rank. 

 

Proof: From the Hautus observability test, system (13) is 

observable if and only if �𝐴
𝑇 − 𝜆𝐼 0 𝐶𝑇
𝐵𝑑𝑇 𝐼 − 𝜆𝐼 0 � has a full 

row rank for all 𝜆. According to a third set of columns, the 
first set of rows is linearly independent of the second. From 
the Hautus condition, the first set of rows is linearly 
independent for all 𝜆 if and only if (𝐴,𝐶) is observable. If 
𝜆 ≠ 1 , the second set of rows is obviously linearly 
independent, while if 𝜆 = 1, the second set of rows is linearly 
independent if and only if 𝐵𝑑𝑇  has full row rank.                                           
∎ 

 
Corollary 1. In order to satisfy the condition that 𝐵𝑑 ∈

ℛ𝑛×𝑛𝑑 has a full column rank, the number of disturbances 𝑛𝑑 
should be less than or equal to the number of states 𝑛𝑥 . 
i.e.𝑛𝑑 ≤ 𝑛𝑥. 

The observer shown in (14) is designed to estimate both 
states and disturbances from the measured outputs of ym. 

�
𝑥�(𝑘 + 1)
�̂�(𝑘 + 1)� =  �𝐴 𝐵𝑑

0 𝐼 � �
𝑥�(𝑘)
�̂�(𝑘)� + �𝐵0�  𝑢(𝑘) 

+ �𝐿𝑥𝐿𝑑
� (−𝑦𝑚(𝑘) +  𝐶𝑥�(𝑘)) 

(14) 

 
Proposition 2. For any stable observer as given in (14), 𝐿𝑑 

has full row rank. 
 
Proof: System (14) can be written as (15), 

�
𝑥�(𝑘 + 1)
�̂�(𝑘 + 1)

� =  �𝐴 + 𝐿𝑥𝐶 𝐵𝑑
𝐿𝑑𝐶 𝐼 � �

𝑥�(𝑘)
�̂�(𝑘)

� +  �𝐵0�  𝑢(𝑘)

− �𝐿𝑥𝐿𝑑
� 𝑦𝑚(𝑘) 

(15) 

Since the observer is stable, it has no pole at (1 , 0). 

Consequently �𝐴 − 𝐼 + 𝐿𝑥𝐶 𝐵𝑑
𝐿𝑑𝐶 0 � is nonsingular. As a result, 

the second set of rows has to be a full row rank, and as a 
necessary condition, 𝐿𝑑 has to also be full row rank. ∎ 

 
Proposition 3. Assume that the system is modeled by (13), 

the observer (14) is stable, and the number of disturbances is 
chosen to be the same as the number of measured outputs. i.e. 
𝑛𝑑 = 𝑝. System (13) at steady state satisfies:  

�𝐴 − 𝐼 𝐵
𝐶 0� �

𝑥�∞
𝑢∞

� =  �−𝐵𝑑�̂�∞𝑦∞
�  (16) 

where 𝑢∞ , 𝑦∞ , 𝑥�∞  and �̂�∞  denote input, output, estimated 
state and estimated disturbance as 𝑡 ⟶ ∞.  

 
Proof: The stability of (14) and convergence of the 

estimated disturbance �̂�(𝑘)  imply 𝐿𝑑(−𝑦∞ + 𝐶𝑥�∞) = 0 . 
Assuming 𝑛𝑑 = 𝑛𝑦 implies that 𝐿𝑑 is a square matrix, and by 
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Proposition 2 it is nonsingular. Therefore,−𝑦∞ + 𝐶𝑥�∞ = 0, 
which is the second set of rows of (16). From (14), we have 
(𝐴 − 𝐼)𝑥�∞ + 𝐵𝑑�̂�∞ + 𝐵𝑢∞ = 0, which is the first set of rows 
of (16). ∎ 

 
The stability of the observer is critical. The observer poles 

affect the closed loop response in transient time. After 
estimation, the target values of states and inputs i.e. 
[�̅�(𝑘) 𝑢�(𝑘)]𝑇  are updated by solving the following 
equation: 

�𝐴 − 𝐼 𝐵
𝐻𝐶 0� �

�̅�(𝑘)
𝑢�(𝑘) � = �−𝐵𝑑�̂�(𝑘)

𝑟(𝑘)
� (17) 

where 𝐻 is the matrix which defines the tracking outputs 𝑧 by 
𝑧 = 𝐻𝑦. 

 
Proposition 4. There exists a unique solution to (17) 

for[�̅�(𝑘) 𝑢�(𝑘)]𝑇 , provided that (A,B) is controllable and 
HC has full row rank. 

Proof: The first set of rows of �𝐴 − 𝐼 𝐵
𝐻𝐶 0� has full row 

rank because (A, B) is controllable, and the second set of 
rows has full row rank according to the assumption. In 
addition, the second set of columns ensures that the first and 
second set of rows is linearly independent of each other.∎ 

The variables used in the optimization problem are defined 
as follows. 

𝛿𝑥𝑘+𝑖|𝑘 ≜ 𝑥𝑘+𝑖|𝑘 − �̅�(𝑘) 

𝛿𝑢𝑘+𝑖|𝑘 ≜ 𝑢𝑘+𝑖|𝑘 − 𝑢�(𝑘) 
(18) 

Finally, the following optimization problem is solved; 

𝑚𝑖𝑛
𝛿𝑢0⋯𝛿𝑢𝑁−1

�𝛿𝑥𝑘+𝑁|𝑘�𝑃
2 + �(

𝑁−1

𝑖=0

�𝛿𝑥𝑘+𝑖|𝑘�𝑄
2

+ �𝛿𝑢𝑘+𝑖|𝑘�𝑅
2) 

(19) 

subject to:  

𝛿𝑥𝑘+𝑖+1|𝑘 = 𝐴𝛿𝑥𝑘+𝑖|𝑘 + 𝐵𝛿𝑢𝑘+𝑖|𝑘  

𝐸𝛿𝑥𝑘+𝑖+1|𝑘 + 𝐿𝛿𝑢𝑘+𝑖|𝑘 ≤ 𝑀 − 𝐸�̅�(𝑘) − 𝐿𝑢�(𝑘) 
(20) 

where ‖𝑥‖𝑀2 ≜ 𝑥𝑇𝑀𝑥,𝑄 ≥ 0, 𝑅 > 0, and P is the solution of 
the Riccati equation. The variable 𝛿𝑥𝑘+𝑖|𝑘  denotes the 
predicted variable at time 𝑖 + 𝑘  obtained by starting from 
𝛿𝑥(𝑘). Matrices 𝐸, 𝐿  and 𝑀 are obtained by (7), (10) and 
(12), and indicate the constraints of the plant and controller.  
 
    Therefore, the output of the system, which is controlled by 
the model predictive controller, reaches the target 𝑟(𝑘)  as 
𝑘 ⟶ ∞ under the following conditions [14]: 
• The closed loop system is asymptotically stable. 

• The process is controllable and observable. 
• The number of disturbances is equal to the number of 

outputs. 
• Augmented system is observable. 
• Constraints are not active at steady state. 

Finally, to implement the proposed offset-free model 
predictive control, the following algorithm summarizes the 
overall control implementation: 

 
Algorithm:  
1) Initialize 𝑥�,  �̂�, �̅� and 𝑢�  
2) Measure outputs 𝑌(𝑘) 
3) Subtract the operating point 𝑦(𝑘) = 𝑌(𝑘) − ℎ0 
4) Estimate 𝑥�(𝑘) and �̂�(𝑘)  by (16) 
5) Compute �̅�(𝑘) and 𝑢�(𝑘)  by (17) 
6) Compute 𝛿𝑥(𝑘) by (18) 
7) Update constraints using (20) 
8) Solve multi-parametric programming (19) and obtain 𝛿𝑢∗ 
9) Compute controller output 𝑢(𝑘) = 𝛿𝑢0∗ + 𝑢�(𝑘) 
10) Add the operating point and apply to the process 

𝑈(𝑘) = 𝑢(𝑘) + 𝑢0 
11) If not end of experiment, go to step 2. 

IV.   SIMULATION RESULTS 
The closed loop system is simulated, taking into 

consideration uncertainties in 𝛾𝑎and 𝛾𝑏as shown in Table 2. 
Figure 5 shows the states and control signal, while the inputs 
are subject to a constraint of −2 < 𝑢𝑖 < 2    𝑖 = 1,2. Figure 
5(a)-(b) shows that the controller is able to move the tracking 
states (water levels of tanks 𝑇2  and 𝑇4 ) from its initial 
condition to the origin, and when the references change (at t = 
500 sec), these states will track the references. In cases where 
model mismatch is absent, these states converge to the origin, 
but the model mismatch causes a non-zero steady state. Since 
there are two inputs in this case study, the steady state error 
of only two outputs are eliminated. Figure 6 shows the 
control signals are indeed in range. Note that there is a 
reference jump at t = 500 sec, which causes a transient error. 
By the next experiment, it is shown that the offset-free 
technique employed in this paper is able to eliminate this 
steady state error. 

For comparison purposes, the system is simulated by LQR 
and the results are shown in Figs. 7 and 8. As shown in Fig. 
7(a)-(b), there are steady state errors in the tracking outputs, 
and it is not offset free. Fig 8(b) shows that the control signal 
violated the upper constraint.  

 
TABLE II  

MISMATCHED PARAMETERS 
Parameter Plant Model 

𝛾𝑎 0.4 0.25 
𝛾𝑏 0.35 0.25 
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Fig. 5 Proposed MPC tracking outputs (solid) and corresponding references 

(dashed), (a) Tank 2 (b) Tank 4 

 

Fig. 6 Proposed MPC results; (a) state variables 𝑥1 and 𝑥3 (b) Control signals 

 
Fig. 7 LQR tracking outputs (solid) and corresponding references (dashed), 

(a) Tank 2 (b) Tank 4 

 

 
Fig. 8 LQR results; (a) state variables 𝑥1 and 𝑥3 (b) Control signals 

 

V.   EXPERIMENTAL RESULTS  
The offset-free model predictive controller described in 

section III is applied to the developed quadruple tanks 
system. The objective is that the water levels of tanks 𝑇2 and 
𝑇4  track the references. Model mismatch affects not only the 
linear system but also the operating point. Due to the model 
mismatch, ℎ𝑖0, 𝑖 = 1,⋯ , 4  are not the steady state water level 
when the inputs are permanently equal to 𝑞𝑖0  , 𝑖 = 1, 2 . 
Therefore, in practice, the origin is not the equilibrium point 
for a linearized system. The combination of LabVIEW and 
MATLAB creates a powerful software tool that allows the 
implementation of the controller on a PC. In order to obtain a 
powerful human machine interface, the controller is 
programmed using the LabVIEW programming language. 
This work uses the Multi Parametric Toolbox for MATLAB 
[15],[16]. The controller runs under LabVIEW but calls a 
MATLAB function from within and uses the Multi 
Parametric Toolbox to solve the optimization problem in each 
sampling time. 

 
First, a reference signal of 30mm were given to both tanks 

𝑇2  and 𝑇4  operating under the proposed MPC scheme. The 
measured water levels of tanks 𝑇2 and 𝑇4 are depicted in Fig. 
9, which shows that the proposed controller succeeded in 
reference tracking and that the water level in both tanks 
followed the given reference with a slight steady state error in 
tank T4. The MPC output signal to the pumps, the resulting 
water flow and measured water level in tanks T1 and T3 are 
depicted in Figs. 10, 11 and 12 respectively. 
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Fig. 9 MPC Measured water level in Tank T2 and Tank T4 respectively. 

 
Fig. 10  MPC controller outputs to pump Pa and Pb respectively. 

 
Fig. 11  MPC resulting flow of pump Pa and Pb respectively. 

 
Fig. 12 MPC Measured water level in Tank T1 and Tank T3 respectively. 

To verify the performance of the designed controller, a 
conventional LQR controller is designed and implemented on 
the same system using the same reference signals. The 
measured water levels of tanks 𝑇2 and 𝑇4 are depicted in Fig. 
13, which shows that the LQR controller successfully 
reaching the reference for tank T2 but in a slower fashion and 
with slightly more overshoot. As for tank T4, the LQR 
controller suffers from offset at steady state and it is also 
slower to reach steady state. The LQR output signal to the 
pumps, the resulting water flow and measured water level in 
tanks T1 and T3 are depicted in Figs. 14, 15 and 16 
respectively. 

 
Fig. 13 LQR Measured water level in Tank T2 and Tank T4 respectively. 

 
Fig. 14 LQR controller outputs to pump Pa and Pb respectively. 

 
Fig. 15 LQR resulting flow of pump Pa and Pb respectively. 
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Fig. 16 MPC Measured water level in Tank T1 and Tank T3 respectively. 

VI.   CONCLUSION 
The work of this paper develops a less computational 

method to achieve an offset free MPC control system. In 
addition, it addresses the practical implementation of the 
developed offset-free model predictive control on a non-
classical and nonlinear multivariable quadruple tanks system. 
While the classical quadruple tanks system consists of two 
tanks up and two tanks down, proposed QTS consists of four 
tanks which are located besides each other. The connection 
between neighboring tanks makes the outlet water flow 
dependent on the difference of water level. Therefore, the 
describing differential equations of the proposed QTS 
configuration is more complex than classical ones.  

Explicit MPC solves the optimization problem with 
constant constraints and saves the results in lookup tables. 
Therefore, in real-time execution it is not possible to change 
the constraints values, and constraint violation may happen. 
Whereas, the proposed offset-free MPC is able to solve the 
multi-parametric program with new constraints values at each 
control loop cycle. Thus, it is able to prevent constraint 
violations. 

It is shown that the mismatch between the models and the 
plant is compensated by the augmented state disturbance. The 
proposed algorithm clearly presents the necessary steps to 
achieve the output of the controller. Both simulation and 
practical results show that the proposed offset-free MPC is 
successful to eliminate the steady state error even in noisy 
environment. The proposed controller was compared with a 
conventional LQR controller and the results show promise for 
the proposed MPC offset free controller.  
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