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This paper derives a least squares-based and a gradient-based iterative identification
algorithms for Wiener nonlinear systems. These methods separate one bilinear cost
function into two linear cost functions, estimating directly the parameters of Wiener
systems without re-parameterization to generate redundant estimates. The simulation
results confirm that the proposed two algorithms are valid and the least squares-based
iterative algorithm has faster convergence rates than the gradient-based iterative

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear block oriented model such as Wiener and
Hammerstein models can be used to approximate many
nonlinear dynamic process. A Wiener model has a linear
dynamic block followed by a static nonlinear function and a
Hammerstein model puts a nonlinear part before a linear
dynamic one [1-5].

The identification issues for Wiener systems have attracted
great attention. Most existing contributions assumed that the
nonlinear part of Wiener models is a linear combination or a
piecewise-linear function [6,7], or has an inverse function over
the operating range of interest [8]. Hu and Chen [9] studied a
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no-invertibility nonlinear part of Wiener models; Kozek and
Sinanovic [10] used optimal local linear models for Wiener
models identification; Figueroa et al. [11] proposed a simulta-
neous approach for Wiener model identification. Hagenblad
et al. [12] derived a maximum likelihood method to identify
Wiener models.

In the field of system modeling and control, the iterative
identification methods are usually used to estimate the
parameters of linear and nonlinear systems in which the
information vector contains unknown variables (unmea-
sured variables or unknown noise terms) [6,7,13-15].
Kapetanios [16] gave a simple iterative idea for ARMA
and VARMA models. Voros [6,7] used the iterative
approaches to identify the parameters of Wiener models.
The iterative solution of a bilinear equation system was
proposed by Bai [17], this is a method using the hierarchical
identification principle [18-20]. Ding and Chen [1] devel-
oped aniterative and a recursive least squares algorithms for
Hammerstein nonlinear ARMAX systems. Their approaches
require estimating more parameters than the Hammerstein
system since by re-parameterization, the number of the
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parameters to be identified increases, leading to many
redundant estimates.

On the basis of the work in [21], this paper derives a
least squares-based and a gradient-based iterative algo-
rithms by introducing two cost functions and by using the
hierarchical identification principle in [18]. These iterative
methods avoid re-parameterizing the linear and nonlinear
parts of the Wiener system to generate redundant esti-
mates. They estimate directly the parameters, increasing
computation efficiency. These iterative algorithms use all
the measured input-output data at each iterative compu-
tation (at each iteration), and thus can produce highly
accurate parameter estimation. Ding et al. [22-29] pre-
sented several novel multi-innovation identification
methods which can be applied to the Wiener nonlinear
systems in this paper.

Briefly, the paper is organized as follows. Section 2
describes identification problem formulation for the
Wiener nonlinear systems. Sections 3 and 4 derive a least
squares-based and a gradient-based iterative algorithms
for the Wiener systems, respectively. Section 5 provides an
illustrative example to show the effectiveness of the
proposed algorithms. Finally, we offer some concluding
remarks in Section 6.

2. Problem description

Let us introduce some notations first. The symbol I,
stands for an identity matrix of order n and I is an identity
matrix of appropriate sizes; the superscript T denotes the
matrix transpose; 1, represents an n-dimensional column
vector whose elements are 1; the norm of a matrix X is
defined by I1X11? = tr[XX"]; Zmax[X] represents the maximum
eigenvalue of the square matrix X.

Refer to the Wiener models in [8,11] and Hammerstein-
Wiener models in [30,31], and consider the following
Wiener system with colored noise:

p q n m
yO=>"a > dglyt-il+ > but—H+ > fivt—k+v(),
i=1 I=1 j=1 k=1

M

where u(t) and y(t) are the system input and output,
respectively, v(t) is a white noise with zero mean, g(*)
are known nonlinear base functions [30]. Assume that
u(t)=0,y(t)=0and v(t)=0 for t < 0 and the orders p, g, n and
m are known.

Define the parameter vectors,

a:=[a,a,...,a5]" € R?,
d=[dy,dy,....dg]" e RY,
b= [b1,by,....ba]" € R",

f = [fl-th .. "fm]T € Rmn

and the input information vector ¢(t), the noise informa-
tion vector ¥(t) and the output information matrix G(t) as

o(t) = [u(t—1),u(t=2), ... ut-n)]" € R", )

V() = [wit-1),vt-2),....vt—m]" € R™, 3)

g1(t-1) Zu-1) 8q(y(t-1))
-2 -2 -2
o gl()’(:t ) g;(y(:t ) gq<y(:t Mm@
g1(y(t-p) L(t-p) &q(t—p))
Eq. (1) can be rewritten as
y(t) =a"G(tyd+ @ (Ob+y" (Of +v(t). )

Note that for model (5), any pair «a and d/« for any nonzero
constant o provides the same input-output data. To have
identifiability, we adopt the normalization constraint on d
for model (5). There are several ways to make the normal-
ization [30,32,33]. Without loss of generality, we adopt the
following:

Assumption 1 (Liu and Bai [32]). Idl =1, and the first
nonzero entry of d is positive, i.e., d; > 0.

Let k=1, 2, 3, ...be an iterative variable and

ai
0, = i’k )
fi
and &, = d,, denote the estimates of
a
0= |b|,
f

and ¢ = d, respectively.
Suppose the data length L > p+q+n-+m. Define the cost
function,

L
J@bf.d)= > [yt)-a"God—¢"(Ob—y" (f . (6)
t=1

The model in (5) contains the product of two parameter
vectors a and d, and this cost function J is a bilinear
cost function, which makes the identification problem
more difficult than that of linear systems. In order to solve
this difficulty, we adopt the hierarchical identification
principle [18-20] and decompose this bilinear cost func-
tion into two linear cost functions J(a,b.f,d,_,) for fixed
d=d,_, and J(a,,b,f.d) for fixed a=ay, b=by, f =f,.
Thus, minimizing the quadratic functions ](a,bf,fik,l) in@
and ](ﬁk,ﬁ,cf,<,d) in d is relatively easy. This idea is
equivalent to minimizing the following two optimization
problems.

e The optimization of a,b and f:

~ A L A
(@bif ) = argmin > y(O-a"G(tydi_ —@T (b—y (O P

t=1
Q)

for fixed &,H, and
e The optimization of d:

~ L A~ ~
di=argmin 3 _[v(0-&,60d—@"Ob—y Of  ®)

t=1

for fixed @by and f,.
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This paper uses the least squares and negative gradient
search method to solve the optimization problem in (7) to
generate the estimates ay.by andfk, and the optimization
problem in (8) to generate the estimate d,.

3. The least squares-based iterative algorithm

Introducing two cost functions:
L@ =J@bf.d )
L A
= Y yO-a'Gtyd,_1—@"(Ob—y (O P,

t=1
J2(®) =J(@bif 1. d)
L A A
= Y -6, GO d—¢" (b~ (0)f .
t=1

Define the stacked output vector Y(L), input information
matrix @(L), noise information matrix ¥(L), and informa-
tion matrices Y(d,_;,L) and Q(ay,L) as

y(1) o'(1)

2 T2
Y() = y(: ) eRl, @1 = ¢ :( ) e R

D) o)
VA
¥'(2)

W) = e Rb™, 9

v
d, ,G'(1)

~T
~ T
Y(dk_l,L) = dk*l.G (2) € RLXp,

&Zq G'(L)
a,G(1)

a,G2)

Qay,L) = e R, (10)

a,G(L)
Hence, J; and J> can be rewritten as
J1(0) = 1Y)~ Y(d,_q,L)a—®L)b—PL)f I
= IY(L)—[X(dy_q,L), D), ¥(L)OI, (1)
J2(®) = 1Y (L)—Q(ay, Lyd— DL —P(L)f 1. (12)

To minimize J;(0) and J>($), let their partial differentials
with respect to 6 and $ be zero:

gradfy 01 = D — opva, b.om vy
Y(L)—[r(&,H L), ®L),¥P(L)0) =
grad = L2 - 207 Ly -0

— (Db —Y(L)f ] =0.

Provided that the input signal is persistently exciting and
the related matrices are non-singular, we can obtain the

least squares estimates of 6 and 9:

0, =E"@_1,DEM;_1,L)]"E"d; 1, DY L), (13)

8 = [Q(@,, L)@, L)] QT (@, LY (L) - D(L)b —Y(L)f ],
(14)

E(dy_1.L) = [Y(dy_1,1),DL),PL)]. (15)

However, ¥(t),t=1,2, ...,L,in ¥(L) contain the unmeasured
noise terms v(t—i) so it is impossible to compute the
estimates 0, and $. The approach here is based on the
iterative identification technique or the hierarchical iden-
tification principle [18-20]. Let U, (t—i) be the estimate of
v(t—i)atiteration k, and 1/"1,{(0 denote the noise information
vector Y(t) obtained by replacing v(t—i) in (3) with
ﬁk,l(t—i), ie.,

YO = [0 1 (E=1), 011 (E=2), ..., D1 (t—m)]". (16)

Replacing a, b, f, d and y(t) in (5) with @_.by_1f 1.k
and ¥ (t), respectively, we can compute the estimate (t)
by

(0 =Y(O)—ar GO 1~ @ Ob + PO . (A7)
Define
(D)
N T 2
Wty = | V| cpiom (18)
D)

Replacing W(L) in (14) and (15) with W), we can
summary the least squares-based iterative identification
algorithm for the Wiener systems (the W-LSI algorithm for
short) as follows:

O =12 (@1 .DE@ 1D 1B @1 DYD), k=123,
(19)

3 = 19" (@, L)@, 1) Q" (@1, LY 1)~ ®L)b— ¥ o (Lf 1],

(20)
By 1.L) = [Y(dy_1,0),®L), YD), 1)
Y(L) =[y(D).y@2),...yDI", 22)
(L) =[p(1),02),....oL)]", 23)
Wil) = WD), . (DT, (24)
Y(di_1,L) = [6(Ddy_1,62)dy_1, ....GL)dy1]", 25)
Qa,L) =[G"(1)a,G'2)ay, ...,G"L)a,]", (26)

o) =[u(t—Dut=2),....ut-n)", t=1.2,...,L, 27

YO = [P 1 (E=1), 051 (E=2), ..., Dp 1 (Et—m)]TT, 28)

DO =y(O—a] GO 1~ @ Ob 1+ O 1 (29)
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g10(t-1) gu(t-1) &y(t-1))
t—2 t—=2)) --- t—2

Git) g10’(: ) gz(V(: ) qu’(: ) . (30)
&1y(t-p) &0(-p) 8q(t—p))

The computation procedure of the W-LSI algorithm in
(19)-(30) is summarized as follows:

1. To initialize, let k=1 and

be some nonzero real vector with ay,+#0, &0 be an real
vector with lidoll=1, and Vo(t—i) = random number
and form y(t) by (28).

2. Collect the input-output data {u(t), y(t), t=1, 2, ..., L},
and form Y(L) by (22), G(t) by (30), ¢(t) by (27) and
®(L) by (23).

3. Form y,(t) by (28), ¥ (L) by (24), Y(d,_1,L) by (25) and
E(dy 1,1 by (21).

4. Compute 6, by (19), and set
a = 0,(1:p),

i-:'k = ék(p+1 1 p+n),

fr=0up+n+1:p+n+m.
Here, the “:” operation in Matlab is used.

5. Form Q(a,,L) by (26).

6. Compute .9k by (20), normalize &k with the first
positive element, i.e.,

A . 3
d, =sgn[d (1] ———

k= sgn[Fx( )]\IBkH
7. Compute 7 (t) by (29).

8. Compare {@y,byf.di) with (@, 1,by 1 f_1.di 1): if
they are sufficiently close, or for some pre-set small
e>0,if

I —@g_1 112 +1Dg—by_1 12 +1If  —F o112+ dy—d 1% <&,
then terminate the procedure and obtain the iterative

times k and the estimates {flk.l;kfk.&k}: otherwise,
increase k by 1 and go to step 3.

4. The gradient-based iterative algorithm

This section derives the gradient-based iterative algo-
rithm for the Wiener models. For the optimization pro-
blems in(11) and (12), minimizing J;(#) and J,($) using the
negative gradient search leads to the iterative algorithm of
computing 0, and &, as follows:

P k i
0, =0,_1— 'ulz( ) grad[J;(0y_1)]

= 01+ (O @1, 1), D), YD
<YL)~[X (1, D), QW) PLNO1)
=01+ (WE"(dy 1, DY) -Edy_1,L)04 1], 31

3 =94 ”Z(k)grad[/z(-% 1]

=31+ m(k)ﬂ{(ék.L)[Y(L>—9(&k.L>&k_1
—®L)b,—Y(L)f i1, (32)

E(dy_1,L) =[Y(dy_1,0), L), ¥(L)]. 33)

where g, (k) > 0 and pu,(k) > 0 are the iterative step-sizes or
convergence factors to be given later.

However, the similar difficulties arise in that y(t), t=1, 2,

, L, in ¥(L) on the right-hand side contain the unmea-
sured noise terms v(t—i) so it is impossible to compute the
estimates 0, and .9,< by (31)and (32). Asimilar derivation of
the W-LSI algorithm is replacing v(t—i) with vk(t 0),Y(t)
with |/1,((t) W(L) with ‘l’k(L) and _.(dk 1,L) with _.(dk 1.L),
and from (31)-(33) we have

O =001+, (OE @ DIYD-E@ . D01), (34)

8= %11 + 1,009 (@, DIY (L) - Q@ Ld_ —OLb—P i (Df ],

35)
Edy_1,L)=[Xdy_1,0),DL), P (L) (36)
Eqgs. (34) and (35) can be rewritten as
O =11, (0E @1, DE@ 1,000 + 1, (OZ @1, DY (D),
37)
3= [’—Mz(k)QT(ﬁk,L)Q(ﬁk‘L)]gkq
+ 1y (K)Q (@, LY (L)~ ®(L)by— ¥ (L) . 38)

In order to guarantee the convergence of 6, and .9,(, the
symmetric matrices I— i, (IC)ET(& k1 .L)E(&k_l ,L) and I—p, (k)
Q' (a,,L)Qa,,L) have all eigenvalues inside the unit circle.
One conservative choice of 1, (k) and pu,(k) is to satisfy

0< () < 2 (39)

=T ~ o
;~max['=' (dk—hL):'(dk—le)]y
2
Jmaxl 2 (@1, L)a, L))
From Egs. (34)-(36), (39)-(40) and (22)-(30), we can
summarize the gradient-based iterative identification

algorithm for the Wiener systems (the W-GI algorithm
for short) as follows:

0 < (k) <

(40)

O =04+ 1, (OE @iy DY)~ Edy1.D0;_1], (41)

81 =91 + 1, (0QT (@ DY (D)~ Dy —®Lb—P((Lf 1],

(42)

Edy_1.L)=[Y(dy_1,L),®0), ¥y (L), (43)
2
0< k)< (44)
)vmax[ (dk 1,L) (dk 1 L)],
0< (k)< 2 (45)
= B )vmax[QT(ﬁkvL)Q(ﬁk-L)] '

YD) =yM).y2),...yDI", (46)
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O(L) =[p(1),@2),...,o0)]", (47)
W) =[P (D), ... DT 48)
Yy 1.D) = [G(D)dy_1,62)dy_1, ....GL)dy 11", (49)
Qa,,L)=[G"(1a,G 2)ay, ...,G"Lya,]", (50)

o) =ut-1ut=2),...,ut-—m", t=12,...L, (51)

Vi) =[P 1 (E=1), D1 (t=2), ..., D1 (t—m)]T, (52)

D) =y(O—a} GO —@ Obr O 1 (53)
gi(t-1) Lt-1) Z((t—1)
t—2 t—2 t—2

. gmy(: ) gzO’(: ) gch: ) 54
g1(y(t—-p)) g(t-p)) g(t—p))

The computation process of the W-GI algorithm is
summarized as follows:

1. To initialize, let k=1 and
ao
éo = BO
fo
be some nonzero real vector with ay,#0, and flo be an
real vector with lldgll = 1, and 7(t—i) = 0 and form yr(t)
by (52).

2. Collect the input-output data {u(t), y(t), t=1, 2, ...,L},
and form Y(L) by (46), G(t) by (54), ¢(t) by (51) and ®(L)
by (47).

3. Form y,(t) by (52), ¥ (L) by (48), X'(d,_1,L) by (49) and
E(dy_1,L) by (43).

4. Choose u;(t) and u,(t) according to (44) and (45),
compute 6, by (41), and set

ay = 0,(1:p),
l;k = ék(p+1 :p+n),

fi=0,p+n+1:p+n+m).

5. Form Q(a,,L) by (50). X
6. Compute 3, by (42), and normalize d, with the first
positive element, i.e.,

. . 3
d, =sgn[$,(1)]—.
k= SgN[Hx( )]\\3k|\

7. Compute 7(t) by (53). . R R

8. Compare {@;,bify.di} with {@,_1.bi 1 1.diq): if
they are sufficiently close, or for some pre-set small
e>0,if

lag—@y_1 1> +1bg—bi_ 112+ If \—f 112 +id—d ;1% <&,

then terminate the procedure and obtain the iterative
times k and the estimates {a,b;.f.d}; otherwise,
increment k by 1 and go to step 3.

In the above W-LSI and W-GI algorithms, the noise v(t)
is computed by the iterative technique, which is just like in
the identification for Hammerstein nonlinear ARMAX
systems in [1], avoiding the computation of the covariance
matrix of the noise. Moreover, the estimate of v(t) con-
verges its true value as long as the parameter estimates
converge their true values.

For CBDS-CDMA communication systems, the jamming
interferences or data-missing cases often arise. In the cases,
the auxiliary model based identification method can be
applied [34].

5. Example

Consider the following nonlinear system with colored
noise:

2
YO = aldigy(t—i)+d28(y(t—i) +d3gz (V(t—1))]

i=1

2
+ ) bju(t—j)+fut=1)+v(t),
j=1

g1(y(t—i)) = y(t-i),

&(y(t—i) =y (t—i),

g3((t=) =y (t-),

0 =[ay,a,,b1,b,,f]T =[0.25,0.28,—0.30,1.00,0.05]",
9 =1[d;,d,,d3]" =[0.80,—0.50,—0.3317]",

© =[0",9"T" =[0.25,0.28,-0.30,1.00,0.05,0.80,—0.50,~0.3317]".

In simulation, the input {u(t)} is taken as a persistent
excitation signal sequence with zero mean and unit
variance, and {v(t)} as a white noise sequence with zero
mean and variance ¢2 = 0.20%,

Apply the proposed W-LSI and W-GI algorithms to
estimate the parameters of this system, the parameter
estimates and their errors with different data length L are
shown in Tables 1-4 and the parameter estimation errors
0= II(:)k—G)H/H@H versus k are shown in Fig. 1, where the
convergence factors of the W-GI algorithm are taken to be

1.5
=T A L
Amax[E (dy_1,L)E(dy_1,0)],

up (k) =

15

k)= .
0= @D L]

From Tables 1-4 and Fig. 1, we can draw the following
conclusions.

e The parameter estimation errors given by the W-LSI and
W-Gl algorithms become small as the iterations increase.

e The parameter estimation errors given by the W-LSI and
W-GI algorithms become small with the data length L
increasing.

o The W-LSI algorithm has faster convergence rates than the
W-GI algorithm. The W-LSI algorithm can generate highly
accurate parameter estimates after only several iterations.
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The W-LSI parameter estimates and errors (L=1000).

1187

k ay ay b, by f d, dy ds d (%)
1 0.16830 0.20117 —0.29866 0.96788 0.16198 0.47697 —0.73778 —0.47768 30.56569
2 0.25089 0.28526 —0.29876 1.00102 0.01518 0.78248 —0.51886 —0.34426 3.03989
3 0.25166 0.28234 —0.29944 1.00384 0.07784 0.78730 —0.51664 —0.33652 2.37482
4 0.25168 0.28204 —0.29949 1.00402 0.08271 0.78744 -0.51671 —0.33609 2.63431
5 0.25168 0.28201 —0.29948 1.00403 0.08249 0.78744 -0.51673 —0.33606 2.62186
6 0.25168 0.28201 —0.29948 1.00403 0.08244 0.78744 -0.51672 —0.33605 2.61901
7 0.25168 0.28201 —0.29948 1.00403 0.08245 0.78745 -0.51672 —0.33605 2.61919
8 0.25168 0.28201 —0.29948 1.00403 0.08245 0.78745 -0.51672 —0.33605 2.61922
9 0.25168 0.28201 —0.29948 1.00403 0.08245 0.78745 -0.51672 —0.33605 2.61921
10 0.25168 0.28201 —0.29948 1.00403 0.08245 0.78745 —0.51672 —0.33605 2.61921
True values 0.25000 0.28000 —0.30000 1.00000 0.05000 0.80000 —0.50000 -0.33170

Table 2

The W-LSI parameter estimates and errors (L=2000).
k a; a by by f dq do ds d (%)
1 0.16929 0.19889 —0.30377 0.97414 0.15759 0.47862 —0.73854 —0.47485 30.37233
2 0.25358 0.27905 —0.30442 1.00223 0.02044 0.79027 -0.51117 —0.33790 2.28847
3 0.25345 0.27533 —0.30459 1.00442 0.05028 0.79264 -0.51167 —0.33154 1.08855
4 0.25349 0.27513 —0.30461 1.00453 0.05105 0.79291 -0.51150 -0.33115 1.08224
5 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79293 —0.51148 —0.33112 1.08102
6 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79293 —0.51148 -0.33112 1.08089
7 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79294 -0.51148 -0.33112 1.08089
8 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79294 —0.51148 —0.33112 1.08089
9 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79294 —0.51148 -0.33112 1.08089
10 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79294 —0.51148 -0.33112 1.08089
True values 0.25000 0.28000 —0.30000 1.00000 0.05000 0.80000 —0.50000 -0.33170

Table 3

The W-GI parameter estimates and errors (L=1000).
k a; a by b, f dq d, ds o (%)
1 —0.33294 0.24567 —0.03180 0.22133 —0.01676 0.18630 0.38146 0.90542 128.84602
5 0.04178 0.06589 —0.28319 0.88955 0.05812 0.08379 —0.89501 —0.43810 59.17438
10 0.14025 0.16213 —0.30083 0.99479 0.06761 0.25766 —0.90546 —0.33727 46.59230
50 0.23741 0.26880 —0.29954 1.00241 0.07227 0.75822 —0.55458 —0.34286 5.02301
100 0.25144 0.28179 —0.29948 1.00400 0.08147 0.78698 -0.51735 -0.33617 2.59360
150 0.25168 0.28201 —0.29948 1.00403 0.08237 0.78744 -0.51673 —0.33605 2.61527
200 0.25168 0.28201 —0.29948 1.00403 0.08244 0.78745 —0.51672 —0.33605 2.61887
True values 0.25000 0.28000 —0.30000 1.00000 0.05000 0.80000 —0.50000 —-0.33170

Table 4

The W-GI parameter estimates and errors (L=2000).
k a; a, by b, f d; d ds d (%)
1 —0.33819 0.25057 —0.03745 0.25259 —0.01900 0.17776 0.45542 0.87235 129.21231
5 0.16026 0.12186 —0.27999 0.93550 0.00296 0.14090 —0.96159 —0.23555 55.84611
10 0.14535 0.15828 —0.30302 1.00198 0.00993 0.31689 —0.89422 -0.31614 43.18056
50 0.24552 0.26794 —0.30454 1.00384 0.04343 0.77680 —0.53342 —0.33472 2.92301
100 0.25342 0.27505 —0.30460 1.00454 0.05061 0.79279 -0.51169 -0.33115 1.09366
150 0.25349 0.27512 —0.30461 1.00454 0.05096 0.79293 —0.51148 -0.33112 1.08091
200 0.25349 0.27512 —0.30461 1.00454 0.05098 0.79294 -0.51148 -0.33112 1.08088
True values 0.25000 0.28000 —0.30000 1.00000 0.05000 0.80000 —0.50000 —0.33170
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Fig. 1. The parameter estimation errors ¢ versus k (L=2000).

6. Conclusions

A least squares-based and a gradient-based iterative
algorithms are developed for Wiener nonlinear systems
using the hierarchical identification principle. The pro-
posed two iterative algorithms can give a satisfactory
identification accuracy and the least squares-based itera-
tive algorithm has faster convergence rates than the
gradient-based iterative algorithm and requires computing
the matrix inversion. Although the algorithms are pre-
sented for the Wiener models, the basic idea can also be
extended to identify Hammerstein-Wiener models.

The proposed least squares-based and gradient-based
iterative algorithms are similar to maximum likelihood
methods to some extent and can be applied to multirate
nonlinear systems or non-uniformly sampled systems
[35-39]. The data filtering-based identification method
in [40] can be extended to such Wiener nonlinear systems.
In general, the parameter estimation errors of the identi-
fication algorithms become small as the data length
increases. This paper uses the example to verify the
convergence results of the proposed iterative algorithms
for nonlinear systems. The convergence analysis of the
iterative algorithms is complex and requires further study.
The proposed iterative algorithm can reduce to identify
Hammerstein systems [41].
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