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Abstract -This paper introduces a well-developed and 
systematic optimization approach to find aconstrained linear 
state feedback control law to a linearized version of a low-
power gas turbine model. In the first part of the paper, the 
nonlinear model is presented and linearized around the 
operating point, and then the linearized model is discretized 
with suitable sampling time to apply the proposed technique. 
Necessary and sufficient conditions for the existence of a 
solution to the constrained problem are presented. Secondly, 
the constrained problem is adopted in a linear programming 
technique to find the control law which guarantees the positive 
invariance conditions of constraints polytope while the input 
control remains bounded under prefixed values along the 
trajectory of the closed loop system. Furthermore, both 
discrete time and nonlinear model are simulated under the 
obtained feedback control law and the results fulfill the 
predefined state constraints without violating the control 
bounds. 

Keywords- Linear state feedback; nonlinear models; gas 
turbines; polyhedral constraints; positive invariance. 

I. INTRODUCTION 

This paper deals with the problem of designing a 
stabilizing constrained state feedback controller for a 
linearized version of a low-power gas turbine while the 
control input not violates the prefixed control boundsalong 
the trajectory of the closed loop system. The importance of 
the constrained control law comes from the practical 
behavior of control systems. Control law design in real 
systems faces some challenges, due to differences between 
the behavior of the practical system and the system model 
used. These differences may add constraints on the system 
model (i.e. state constraints, input constraints and parametric 
uncertainties) narrow the distance between the system model 
and the actual system behavior. This may occur, for example, 
when dealing with input saturation, the linearity assumption 
is satisfactory only in specific regions of the state space or 
when the violation of state constraints may cause 
irreversible damage to some components of the system. 
Hence, the presence of such constraints may dramatically 
affect the performance of the overall system so that it is 
necessary to integrate the constraints directly in the design 
process. Ignoring these constraints in the design of the 
controllers may lead to non-practical system conditions, 
losing control performances, producing limit cycles, and 
even to the instability of the closed loop system as discussed 
in [1]. 

Bitsoris [2,3] and Blanchini [4] have found that 

designing state feedback controller for discrete time linear 
systems under state and input control polyhedral constraints, 
basically, depends on the positive invariance theory where 
the state feedback control law guarantees that a given 
polytope in the state space is positively invariant while the 
input control remains bounded under prefixed values. The 
eigen structure approach has been used to design state 
feedback law for discrete–time Linear Time Invariant (LTI) 
constrained systems subject to actuator constraints as 
discussed by Castelan [5], Abouelsoud [6], Tarbouriech [7] 
and Vassilaki, Hennet, and Bitsoris [8].  Also, the problem 
of existence of positively invariant sets for discrete-time LTI 
systems has studied in [9]. Basilio, Milani, and 
Carvalhos[10], have studied regulator problem under 
polyhedral constraints.  Different techniques are suggested 
Wei, Yuan, and Hong [11], and Blanchini [12] to solve and 
study systems under constraints in presences of uncertainties 
and disturbances. Recently, the set invariant approach has 
been used to solve the constrained system where a controlled 
invariant polyhedral sets for linear discrete-time descriptor 
system subject to state and control constraints and persistent 
disturbances have been constructed in [13]. Programming 
techniques have also been suggested by Benvenuti, and 
Farina [14] to find an appropriate control law for constrained 
systems with no uncertainty. Furthermore, new 
programming technique has been presented in [15, 16] to 
design a stabilizing controller for constrained linear discrete 
time uncertain systems and find the largest uncertainty 
accompanied with such control law. 

Gas turbine is constrained nonlinear mechanical system 
used in transportation such as, aircrafts, cars as well as 
power systems which they are the main power generators. 
Many control approaches applied on gas turbine based on 
linear control. Mu, and Liu [17], has designed advanced PID 
control for aircraft gas turbine engines. In Perez [18], state-
space based linear controllers have been used. In addition to 
linear quadratic Gaussian control with loop transfer recovery 
(LQG/LTR) has been suggested in [19]and robust control 
system design have also been performed for gas turbines as 
discussed in [20].Moreover, different types of nonlinear 
control approaches for gas turbine control have been 
suggested. Model predictive control has been presented in 
[21, 22].  On the other hand, intelligent control was used in 
solving this case (i.e. neural networks, genetic algorithms 
and fuzzy control as discussed in [23, 24]. 

This paper is organized as follows: In section 2 a 
nonlinear state space model for the gas turbine system 
descriptions are given. The positive invariance approach and 
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its preliminarily definitions are given in section 3. The linear 
programming technique and an appropriate objective 
function are presented in section 4. In section 5, the 
constrained state feedback law is applied to the discrete time 
gas turbine model. The simulation of the discrete time 
closed loop shows the ability of the proposed controller in 
satisfying the constraints of the model. The simulations of 
the nonlinear gas turbine model in the presence of the 
controller are given. The results obtained from the 
simulations of the nonlinear system prove that good 
performance of the gas turbine can be achieved by using the 
suggested constrained state feedback controller. Finally, 
section 6 presents the conclusion and an insight to future 
work and nomenclature of the gas turbine model is given at 
the end of the paper. 

II. GAS TURBINE MODEL 

A. System Description: 

The main parts of a gas turbine include the inlet duct, 
compressor, combustion chamber, turbine and nozzle or gas-
deflector. The main parts of the gas turbine are shown in 
Fig.1. 

 
Fig.1the main parts of the gas turbine 

B. Modeling Assumptions:  

The gas turbine model proposed in [25, 26] is suitable 
for control proposes under the following modeling general 
assumptions. 

• Constant physic-chemical properties are assumed in 
each main part of the gas turbine, such as specific 
heat at constant pressure and at constant volume, 
specific gas constant and adiabatic exponent. 

• Heat loss (heat transmission, heat conduction, heat 
radiation) is neglected. 

C. Dynamic Model Equations 

The dynamic model of the gas turbine is presented in [25] 
However, appendix A contains the nomenclature of the 
turbine model. 
𝑑𝑑𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶

𝑑𝑑𝑑𝑑
= �̇�𝑚𝐶𝐶 + �̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − �̇�𝑚𝑇𝑇(1) 
𝑑𝑑𝑝𝑝3

𝑑𝑑𝐶𝐶𝑑𝑑

𝑑𝑑𝑑𝑑
=

𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑

𝑇𝑇3
𝑑𝑑𝐶𝐶𝑑𝑑𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝐶𝐶𝑣𝑣

��̇�𝑚𝐶𝐶𝐶𝐶𝑝𝑝𝑇𝑇2
𝑑𝑑𝐶𝐶𝑑𝑑 − �̇�𝑚𝑇𝑇𝐶𝐶𝑝𝑝𝑇𝑇3

𝑑𝑑𝐶𝐶𝑑𝑑

+ 𝒬𝒬𝑓𝑓𝜂𝜂𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 �̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 � 
(2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
4𝜋𝜋2Θ  𝑑𝑑

��̇�𝑚𝑇𝑇𝐶𝐶𝑝𝑝(𝑇𝑇3
𝑑𝑑𝐶𝐶𝑑𝑑 − 𝑇𝑇4

𝑑𝑑𝐶𝐶𝑑𝑑 )𝜂𝜂𝑚𝑚𝑓𝑓𝑚𝑚 ℎ − �̇�𝑚𝐶𝐶𝐶𝐶𝑝𝑝(𝑇𝑇2
𝑑𝑑𝐶𝐶𝑑𝑑 −

𝑇𝑇1
𝑑𝑑𝐶𝐶𝑑𝑑 ) −             2𝜋𝜋 3

50
𝑑𝑑 𝑀𝑀𝑓𝑓𝐶𝐶𝑙𝑙𝑑𝑑 �(3)   

The following equations describe the total temperature 
after the compressor (𝑇𝑇2

𝑑𝑑𝐶𝐶𝑑𝑑 ) , the total temperature before 
turbine ( 𝑇𝑇3

𝑑𝑑𝐶𝐶𝑑𝑑 )  and the total temperature after the 
turbine  (𝑇𝑇4

𝑑𝑑𝐶𝐶𝑑𝑑 ) . In addition the compressor mass flow 
rate(�̇�𝑚𝐶𝐶) and the turbine mass flow rate (�̇�𝑚𝑇𝑇)respectively. 

D. Constitutive (Algebraic) Equations 

1. The total temperature after the compressor is found 
by using the isentropic efficiency 𝜂𝜂𝐶𝐶in the following 
manner: 

𝑇𝑇2
𝑑𝑑𝐶𝐶𝑑𝑑 = 𝑇𝑇1

𝑑𝑑𝐶𝐶𝑑𝑑 �1 + 1
𝜂𝜂𝐶𝐶
��𝑝𝑝3

𝑑𝑑𝐶𝐶𝑑𝑑

𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑 �

𝛾𝛾−1
𝛾𝛾
− 1��          (4) 

2. The total temperature after combustor is found using 
the ideal gas equation which is used for the 
combustion chamber: 

𝑇𝑇3
𝑑𝑑𝐶𝐶𝑑𝑑 =  𝑝𝑝3

𝑑𝑑𝐶𝐶𝑑𝑑 𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝐶𝐶𝑣𝑣

                            (5) 
3. The total temperature after the turbine is found 

similarly by using the isentropic efficiency 𝜂𝜂𝑇𝑇 

𝑇𝑇4
𝑑𝑑𝐶𝐶𝑑𝑑 = 𝑇𝑇3

𝑑𝑑𝐶𝐶𝑑𝑑 �1 − 𝜂𝜂𝑇𝑇 �1 −  � 𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑

𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁

�
𝛾𝛾−1
𝛾𝛾
��    (6) 

4. The following two equations describe the mass flow 
rate of the compressor and the turbine. 

�̇�𝑚𝐶𝐶 = 

𝛽𝛽𝐴𝐴1
𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑

�𝑇𝑇1
𝑑𝑑𝐶𝐶𝑑𝑑

⎝

⎛𝑙𝑙1
𝑑𝑑

�𝑇𝑇1
𝑑𝑑𝐶𝐶𝑑𝑑

𝑇𝑇𝐶𝐶

𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑

𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶

+ 𝑙𝑙2
𝑑𝑑

�𝑇𝑇1
𝑑𝑑𝐶𝐶𝑑𝑑

𝑇𝑇𝐶𝐶

+ 𝑙𝑙3
𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑

𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶

+ 𝑙𝑙4� 

(7) 

�̇�𝑚𝑇𝑇 = 𝛽𝛽𝐴𝐴3
𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑

�𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑅𝑅 ⎝

⎛𝐶𝐶1
𝜁𝜁𝑑𝑑

�𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑅𝑅

𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁
𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑

+ 𝐶𝐶2
𝜁𝜁𝑑𝑑

�𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑅𝑅

+              𝐶𝐶3
𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁
𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑

+ 𝐶𝐶4� 

(8) 
The model constants can be found in Table II in 

Appendix A. 

1. The dynamic model of the gas turbine is valid 
within the following operating domain: 

𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑚𝑚𝑚𝑚𝑑𝑑 ≤ 𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 ≤ 𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑚𝑚𝑙𝑙𝑚𝑚                              (9) 

𝑝𝑝3𝑚𝑚𝑚𝑚𝑑𝑑
𝑑𝑑𝐶𝐶𝑑𝑑 ≤ 𝑝𝑝3

𝑑𝑑𝐶𝐶𝑑𝑑 ≤ 𝑝𝑝3𝑚𝑚𝑙𝑙𝑚𝑚
𝑑𝑑𝐶𝐶𝑑𝑑                         (10) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑 ≤ 𝑑𝑑 ≤ 𝑑𝑑max                         (11) 
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Where the typical values of the constraints as follow: 

𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑚𝑚𝑚𝑚𝑑𝑑 = 0.00305 𝑘𝑘𝑘𝑘   , 𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝑚𝑚𝑙𝑙𝑚𝑚 = 0.00835 𝑘𝑘𝑘𝑘,
𝑝𝑝3𝑚𝑚𝑚𝑚𝑑𝑑
𝑑𝑑𝐶𝐶𝑑𝑑 = 154837 𝑃𝑃𝑙𝑙 , 𝑝𝑝3𝑚𝑚𝑙𝑙𝑚𝑚

𝑑𝑑𝐶𝐶𝑑𝑑 = 325637 𝑃𝑃𝑙𝑙 , 𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑 = 650 1
𝑠𝑠

, 

and 𝑑𝑑𝑚𝑚𝑙𝑙𝑚𝑚 = 833.333 1
𝑠𝑠
 

Avoid the saturation of the actuator so that the control 
input�̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is bounded: 

0 ≤ �̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ≤ 0.03 𝑘𝑘𝑘𝑘 𝑠𝑠⁄                             (12) 

E. Transformation to Dimensionless Form 

The equations of the gas turbine model equations (1) to 
(8) are transformed into the dimensionless form by using the 
standard transformation variables in Table I. This 
transformation is applied to normalize the gas turbine 
variables through dividing them by the normalizing 
variables given in the following table. 

Table I: The standard quantities to transform the model variables to its 
dimensionless form. 

Reference quantity   Reference quantity        

Temperature  :  𝑇𝑇𝑟𝑟 = 𝑇𝑇1 Mass  :    𝑚𝑚𝑟𝑟 = 𝑃𝑃𝑟𝑟𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑅𝑅 𝑇𝑇𝑟𝑟

 

Pressure : 𝑃𝑃𝑟𝑟 = 𝑃𝑃1 Mass flow rate  : �̇�𝑚𝑟𝑟 = 𝜌𝜌𝑟𝑟  𝑙𝑙 𝐴𝐴1 

Density  : 𝜌𝜌𝑟𝑟 = 𝑃𝑃𝑟𝑟
𝑅𝑅 𝑇𝑇𝑟𝑟

 Time    : 𝑑𝑑𝑟𝑟 = 𝑚𝑚𝑟𝑟

�̇�𝑚𝑟𝑟
 

Velocity  : 𝑙𝑙𝑟𝑟 = �𝛾𝛾 𝑅𝑅 𝑇𝑇𝑟𝑟  Dimensionless time :   𝜏𝜏 = 𝑑𝑑
𝑑𝑑𝑟𝑟

 

Speed   :  𝑑𝑑𝑟𝑟 = 𝑑𝑑
𝑑𝑑𝐶𝐶

  

 
The dimensionless equations of the gas turbine model 

will be written w.r.t the normalized variables given in Table 
I. 

a. From (1), let 𝑧𝑧1 = 𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
𝑚𝑚𝑟𝑟

then   𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 = 𝑧𝑧1𝑚𝑚𝑟𝑟 , and 

𝑤𝑤 =
�̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�̇�𝑚𝑟𝑟
 

𝑑𝑑𝑧𝑧1
𝑑𝑑𝜏𝜏

= �̇�𝑚𝐶𝐶
�̇�𝑚𝑟𝑟

+
�̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�̇�𝑚𝑟𝑟
− �̇�𝑚𝑇𝑇

�̇�𝑚𝑟𝑟
=�̇�𝑚𝐶𝐶𝐶𝐶 + 𝑤𝑤 − �̇�𝑚𝑇𝑇𝐶𝐶 (13)  

b. From (2), let 𝑧𝑧2 = 𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑

𝑝𝑝𝑟𝑟
      then   𝑝𝑝3

𝑑𝑑𝐶𝐶𝑑𝑑 = 𝑧𝑧2𝑃𝑃𝑟𝑟  
 𝑑𝑑𝑧𝑧2

𝑑𝑑𝜏𝜏
=

𝑧𝑧2

𝑇𝑇3𝐶𝐶 𝑧𝑧1𝐶𝐶𝑣𝑣
�
�̇�𝑚𝐶𝐶

�̇�𝑚𝑟𝑟
𝐶𝐶𝑝𝑝𝑇𝑇2𝐶𝐶 −

�̇�𝑚𝑇𝑇

�̇�𝑚𝑟𝑟
𝐶𝐶𝑝𝑝𝑇𝑇3𝐶𝐶 + 𝒬𝒬𝑓𝑓𝜂𝜂𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶

�̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�̇�𝑚𝑟𝑟
� 

=
𝑧𝑧2

𝑇𝑇3𝐶𝐶 𝑧𝑧1𝐶𝐶𝑣𝑣
��̇�𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑇𝑇2𝐶𝐶 − �̇�𝑚𝑇𝑇𝐶𝐶𝐶𝐶𝑝𝑝𝑇𝑇3𝐶𝐶 + 𝒬𝒬𝑓𝑓𝜂𝜂𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝑤𝑤� 

(14) 
c. From (3), let 𝑧𝑧3 = 𝑑𝑑

𝑑𝑑𝐶𝐶
      then   𝑑𝑑 = 𝑧𝑧3𝑑𝑑𝐶𝐶  

𝑑𝑑𝑧𝑧3

𝑑𝑑𝜏𝜏
=

𝑇𝑇𝑟𝑟𝑚𝑚𝑟𝑟

4𝜋𝜋2Θ𝑑𝑑𝐶𝐶2𝑑𝑑𝑟𝑟
��̇�𝑚𝑇𝑇𝐶𝐶𝐶𝐶𝑝𝑝(𝑇𝑇3𝐶𝐶 − 𝑇𝑇4𝐶𝐶 )𝜂𝜂𝑚𝑚𝑓𝑓𝑚𝑚 ℎ − �̇�𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝(𝑇𝑇2𝐶𝐶

− 1) −             2𝜋𝜋
3
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𝑑𝑑𝐶𝐶𝑑𝑑𝑟𝑟𝑀𝑀𝑓𝑓𝐶𝐶𝑙𝑙𝑑𝑑

𝑇𝑇𝑟𝑟�̇�𝑚𝑟𝑟
� 

(15) 
Also the Constitutive equations transformed to the 

dimensionless form as follows: 

𝑇𝑇2𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 = �1 + 1

𝜂𝜂𝐶𝐶
��𝑝𝑝3𝐶𝐶

𝑑𝑑𝐶𝐶𝑑𝑑 �
𝛾𝛾−1
𝛾𝛾 − 1��                    (16) 

𝑇𝑇3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 =  

𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑

𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝐶𝐶
                                    (17) 

𝑇𝑇4𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 = 𝑇𝑇3𝐶𝐶

𝑑𝑑𝐶𝐶𝑑𝑑 �1 − 𝜂𝜂𝑇𝑇 �1 −  �𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁�

𝛾𝛾
𝛾𝛾−1��         (18) 

�̇�𝑚𝐶𝐶𝐶𝐶 = 𝛽𝛽�𝑅𝑅
𝛾𝛾
�𝑙𝑙1

𝑑𝑑𝐶𝐶𝑑𝑑𝑟𝑟

�𝑇𝑇𝑟𝑟𝑇𝑇𝐶𝐶

𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑

𝜎𝜎𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
+ 𝑙𝑙2

𝑑𝑑𝐶𝐶𝑑𝑑𝑟𝑟

�𝑇𝑇𝑟𝑟𝑇𝑇𝐶𝐶

+ 𝑙𝑙3
𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑

𝜎𝜎𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶
+ 𝑙𝑙4�(19) 

�̇�𝑚𝑇𝑇𝐶𝐶 =
𝛽𝛽𝐴𝐴3𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝐶𝐶

𝐴𝐴1
�
𝑅𝑅
𝛾𝛾𝑇𝑇𝑟𝑟

�𝐶𝐶1𝜏𝜏𝑑𝑑𝐶𝐶𝑑𝑑𝑟𝑟𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁 + 𝐶𝐶2𝜏𝜏𝑑𝑑𝐶𝐶𝑑𝑑𝑟𝑟

+             �𝐶𝐶3𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 𝜎𝜎𝐼𝐼𝜎𝜎𝑁𝑁 + 𝐶𝐶4��

𝑝𝑝3𝐶𝐶
𝑑𝑑𝐶𝐶𝑑𝑑 𝑇𝑇𝑟𝑟

𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 𝐶𝐶
� 

(20) 

The model state and input constraints (9) to (12) are also 
transformed to its dimensionless form around the obtained 
operating point 

𝑧𝑧𝑚𝑚𝑚𝑚𝑑𝑑  ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑚𝑚𝑙𝑙𝑚𝑚                              (21) 

The transformed input fuel rates 

𝑤𝑤𝑚𝑚𝑚𝑚𝑑𝑑 ≤ 𝑤𝑤 ≤ 𝑤𝑤𝑚𝑚𝑙𝑙𝑚𝑚                             (22) 

F. Linearization 

The obtained nonlinear state space model described by 
equation (13) to (14) is linearized around the operating 
point𝑧𝑧𝐶𝐶  in the matrix form as follows: 

𝑑𝑑𝑧𝑧 (𝜏𝜏)
𝑑𝑑𝜏𝜏

= 𝑓𝑓(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3,𝑤𝑤)                        (23) 

Using the first-order Taylor expansion of (23) leads to 
the following  

�̇�𝑧(𝑑𝑑) ≅ 𝑓𝑓(𝑧𝑧𝐶𝐶 ,𝑤𝑤𝐶𝐶) + 𝐴𝐴 𝑧𝑧(𝑑𝑑) + 𝐵𝐵𝑤𝑤(𝑑𝑑)             (24) 

where 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3)𝑇𝑇 

Note, the  (𝑧𝑧𝐶𝐶 ,𝑤𝑤𝐶𝐶 ) are the equilibrium values of the 
nonlinear system (23) such that  𝑓𝑓(𝑧𝑧𝐶𝐶 ,𝑤𝑤𝐶𝐶) = 0 , then the 
linearized continuous time state space model is based on 
first order derivative i.e. 

𝐴𝐴 ≔ �𝜕𝜕𝑓𝑓 (𝑧𝑧 ,𝑤𝑤)
𝜕𝜕𝑧𝑧

�
𝑧𝑧=𝑧𝑧𝐶𝐶 ,𝑤𝑤=𝑤𝑤𝐶𝐶

                        (25.a) 

𝐵𝐵 ≔ �𝜕𝜕𝑓𝑓 (𝑧𝑧,𝑤𝑤)
𝜕𝜕𝑤𝑤

�
𝑧𝑧=𝑧𝑧𝐶𝐶 ,𝑤𝑤=𝑤𝑤𝐶𝐶

                       (25.b) 

To ensure the state constraint polytope containing the 
origin (i.e.𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 < 0 < 𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚 ), assume that: 

Let 𝑚𝑚 = 𝑧𝑧 − 𝑧𝑧𝐶𝐶  and  𝑓𝑓 = 𝑤𝑤 − 𝑤𝑤𝐶𝐶 , the state and input 
control variables are shifted around operating point 

�̇�𝑚(𝑑𝑑) = 𝐴𝐴 𝑚𝑚(𝑑𝑑) + 𝐵𝐵 𝑓𝑓(𝑑𝑑)                          (26) 

State constraints (21) and input control (22) will be 

𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑  ≤ 𝑚𝑚 ≤ 𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚                                 (27) 

𝑓𝑓𝑚𝑚𝑚𝑚𝑑𝑑 ≤ 𝑓𝑓(𝑑𝑑) ≤ 𝑓𝑓𝑚𝑚𝑙𝑙𝑚𝑚                               (28) 
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The linearized gas turbine model (25) is discretized with 
a sampling time 𝑇𝑇𝑠𝑠and the discrete time model hasΦ and Γas 
the discrete time matrices i.e. 

𝑚𝑚(𝑘𝑘 + 1) = Φ 𝑚𝑚(𝑘𝑘) + Γ 𝑓𝑓(𝑘𝑘),                  (29) 

whereΦ = 𝑓𝑓𝐴𝐴𝑇𝑇𝑠𝑠 , and Γ = ∫ 𝑓𝑓𝐴𝐴𝜏𝜏𝐵𝐵 𝑑𝑑𝜏𝜏𝑇𝑇𝑠𝑠
0  

Now, given a polyhedral set 𝒫𝒫 containing the origin, the 
problem is to find a linear stabilizing controller for the 
linearized version gas turbine model (28) 

𝑓𝑓(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑚𝑚(𝑘𝑘), for every 𝑘𝑘 ≥ 0                    (30) 

Such that state constraint polytope (27) is positively 
invariant with respect to the motion of the closed-loop 
system (31) while the control does not violate the input 
constraint (28). Moreover, the closed loop system is 
asymptotically stable. 

𝑚𝑚(𝑘𝑘 + 1) = (Φ + Γ𝐹𝐹𝑇𝑇) 𝑚𝑚(𝑘𝑘)                      (31) 

In order to proceed in the proposed technique, 
preliminarily definitions are presented in the following 
section. 

III. PRELIMINARY DEFINITION 

Definition 1: 

Controlled invariant set: The set Ωis called a controlled 
invariant set of the nominal system                             

  𝑚𝑚(𝑘𝑘 + 1) = Φ𝑚𝑚(𝑘𝑘) + Γ 𝑓𝑓(𝑘𝑘)                   (32) 

 If and only if there exists a feedback control law𝑓𝑓(𝑘𝑘) =
𝐹𝐹𝑇𝑇𝑚𝑚(𝑘𝑘)  such that Ω  is an invariant set of  𝑚𝑚(𝑘𝑘 + 1) =
(Φ + Γ𝐹𝐹𝑇𝑇)𝑚𝑚(𝑘𝑘) 

Definition 2: 

Substochastic matrix: A non-negative matrix  𝑆𝑆 ∈ 𝑅𝑅𝑑𝑑×𝑚𝑚  
is called substochastic matrix 

 If𝑠𝑠𝑚𝑚𝑖𝑖 ≥ 0,  𝑚𝑚 = 1, … ,𝑑𝑑 and𝑖𝑖 = 1, … ,𝑚𝑚,   

∑ 𝑠𝑠𝑚𝑚𝑖𝑖 ≤ 1𝑚𝑚 , 𝑖𝑖 = 1, … ,𝑚𝑚                    (33) 

The following definition illustrates the term convex 
combination. 

Definition 3: 

Convex polytope: The polytope  𝒫𝒫 , with  0 ∈ 𝒫𝒫 , 
consisting of all convex combinations of the vectors 
(𝑣𝑣1, … … , 𝑣𝑣𝑀𝑀) will be denoted as 𝑚𝑚𝐶𝐶𝑑𝑑𝑣𝑣(𝑣𝑣1, … … , 𝑣𝑣𝑀𝑀) , i.e. 

𝒫𝒫 = 𝑚𝑚𝐶𝐶𝑑𝑑𝑣𝑣(𝑣𝑣1, … … , 𝑣𝑣𝑀𝑀) 

       ≔ {𝑝𝑝 ∈ 𝑅𝑅𝑑𝑑 |𝑝𝑝 = �𝛼𝛼𝑚𝑚𝑣𝑣𝑚𝑚

𝑀𝑀

𝑚𝑚=1

,�𝛼𝛼𝑚𝑚

𝑀𝑀

𝑚𝑚=1

= 1,𝛼𝛼𝑚𝑚 ≥ 0, 𝑚𝑚

= 1,2, … ,𝑀𝑀}. 
(34) 

The following Theorem.1 is presented in [14] gives the 
necessary and sufficient condition for a given polytope  𝒫𝒫 =
𝑚𝑚𝐶𝐶𝑑𝑑𝑣𝑣(𝑃𝑃), to be positive invariant with respect to the motion 
of the closed loop system (31) in terms of its vertices. 
Moreover, Theorem .2 is given by Seneta [27] and it gives 
the relation between the eigenvalues of the closed loop 

system and the positive invariance condition of the 
polytope 𝒫𝒫. 

Theorem 1:[14] 

The polytope  𝒫𝒫 = 𝑚𝑚𝐶𝐶𝑑𝑑𝑣𝑣(𝑃𝑃) , with  0 ∈ 𝒫𝒫 , is positively 
invariant with regard to the motions of the closed loop 
system 𝑚𝑚(𝑘𝑘 + 1) = (Φ + Γ𝐹𝐹𝑇𝑇)𝑚𝑚(𝑘𝑘), if and only if there is 
exist a sub-stochastic matrix 𝑆𝑆 such that 

(Φ + Γ𝐹𝐹𝑇𝑇)𝑃𝑃 = 𝑃𝑃𝑆𝑆                                   (35) 

Theorem 2: [27] 

If there exists a substochastic matrix 𝑆𝑆  which satisfies 
the following equality(Φ + Γ𝐹𝐹𝑇𝑇)𝑃𝑃 = 𝑃𝑃𝑆𝑆, then the spectral 
radii of (Φ + Γ𝐹𝐹𝑇𝑇) is a subset of that of 𝑆𝑆. 

The following Theorem .3 guarantees the existence of a 
positive invariant polytope for asymptotically stable system 
and Lemma .1 gives the positive invariant in terms of 
polytope vertices. 

Theorem 3: [14] 

The existence of asymptotically stabilizing feedback 
control law for the nominal system (29) implies the 
existence of a positively invariant polytope𝒫𝒫with respect to 
the motions of the closed-loop system (31).   

Proofs are presented in [14]. 

Lemma 1: [1] 

The set 𝒫𝒫 is positively invariant with respect to the 
motion of the closed loop system (31) if and only if it is 
positively invariant with respect to the motion of system (31) 
at vertices 𝑣𝑣𝑝𝑝(𝑚𝑚), 𝑚𝑚 = 1,2, … … ,𝑀𝑀,  of the set𝒫𝒫. 

Proofs are given in [1]. 

IV. THE OPTIMIZATION TECHNIQUE 

The invariant property of the polytope𝒫𝒫  is shown by 
Theorem 1 and lead to the set of the linear inequalities (35) 
in the unknown variables 𝑠𝑠𝑚𝑚𝑖𝑖  and𝐹𝐹𝑇𝑇. The set of inequalities 
give more than one solution, hence, an optimization 
technique is used by Benvenutiand Farina in [14] to select 
the best one by using an objective function that improve the 
closed loop stability. In this context, Gantmacher [28] found 
that the state feedback control law that makes the state 
polytope 𝒫𝒫 positive invariant satisfies the following criteria: 
the set of the eigenvalues of the closed loop (Φ + Γ𝐹𝐹𝑇𝑇) is a 
subset of the eigenvalues of𝑆𝑆.An optimization technique is 
used to minimize the spectral radius of the closed loop 
matrix (Φ + Γ𝐹𝐹𝑇𝑇) by selecting an objective function 
approximates the spectral radius of the 
substochasticmatrix 𝑆𝑆. 

From the definition of the spectral radii of any non-
negative matrix   𝑆𝑆 ∈ 𝑅𝑅𝑑𝑑×𝑑𝑑  is 𝜇𝜇(𝑆𝑆) =
max(𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑑𝑑) , where (𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑑𝑑)  and (𝜆𝜆𝑚𝑚 ≥ 0)  are 
the eigen values of the matrix  𝑆𝑆 . Using the sum of all 
elements of matrix 𝑆𝑆 as an objective function is proposed as 
discussed in [29]. That choice depends on the well-known 
fact  𝜇𝜇(𝑆𝑆) ≤ ∑ 𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖 given by Senate [27]. However, the 
suggested objective function hereby is modified to be the 
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trace of the matrix  𝑆𝑆 .Note that, the suggested objective 
function is linear in the unknown variables 𝑠𝑠𝑚𝑚𝑚𝑚  which reduce 
the optimization technique to linear one. The linearized 
discrete time system (29) for the gas turbine model has a 
feasible state feedback control law 𝑓𝑓(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑚𝑚(𝑘𝑘), under 
the polyhedral constraints (27) while the control does not 
violate the constraints (28), if the following linear 
programming problem has a feasible solution  

min 𝑑𝑑𝑟𝑟(𝑆𝑆) 

𝑠𝑠𝑓𝑓𝐶𝐶𝑖𝑖𝑓𝑓𝑚𝑚𝑑𝑑 𝑑𝑑𝐶𝐶 

(Φ + Γ𝐹𝐹𝑇𝑇) 𝑃𝑃 = 𝑃𝑃 𝑆𝑆                            (36.a) 

𝑓𝑓𝑚𝑚𝑚𝑚𝑑𝑑 ≤ 𝐹𝐹𝑇𝑇𝑣𝑣𝒫𝒫𝑚𝑚 ≤ 𝑓𝑓𝑚𝑚𝑙𝑙𝑚𝑚  ,   𝑚𝑚 = 1, … ,ℎ               (36.b) 

𝑠𝑠𝑚𝑚𝑖𝑖 ≥ 0,  𝑚𝑚, 𝑖𝑖 = 1, … ,ℎ                         (36.c) 

∑ 𝑠𝑠𝑚𝑚𝑖𝑖 ≤ 1𝑚𝑚 , 𝑖𝑖 = 1, … ,ℎ                       (36.d)     

Where ℎ  is the number of vertices of the polytope  𝒫𝒫 , 
condition (36.a) comes from the positive invariance 
Theorem1.Conditions (36.b) come from input control 
constraints (27), and conditions (36.c) and (36.d) imply that 
the matrix 𝑆𝑆 is a non-negative substochastic matrix. 

Benvenuti and Farina [14, 29], have found that positive 
invariance does not guarantee asymptotic stability of the 
uncertain system; however the proposed linear programming 
approach can achieve asymptotic stability of the closed-loop 
system if the optimization constraints (36.d) strictly hold. To 
illustrate this point, the spectral radius  𝜌𝜌(𝑆𝑆) of a non-
negative matrix 𝑆𝑆 ∈  𝑅𝑅+

𝑑𝑑×𝑑𝑑 must satisfy the following 
inequality: 

𝜌𝜌(𝑆𝑆) ≤ 𝑚𝑚𝑙𝑙𝑚𝑚(∑ 𝑠𝑠𝑚𝑚1𝑑𝑑
𝑚𝑚=1 ,∑ 𝑠𝑠𝑚𝑚2𝑑𝑑

𝑚𝑚=1 , … … … ,∑ 𝑠𝑠𝑚𝑚𝑑𝑑𝑑𝑑
𝑚𝑚=1 )(37) 

Combining (37) and (36.d) yields∑ 𝑠𝑠𝑚𝑚𝑖𝑖𝑑𝑑
𝑚𝑚=1 ≤ 1 , which 

imply that  𝜌𝜌(𝑆𝑆) < 1 .Consequently, from the results of 
Theorem 2, the condition of the asymptotic stability  
𝜌𝜌(𝐴𝐴 + 𝐵𝐵𝐹𝐹𝑇𝑇) < 1 can be achieved. Moreover, the asymptotic 
stability is mainly related to the objective function, thus if a 
good choice of the optimization function is well selected, 
then it would improve asymptotic stability. 

V. RESULTS AND DISCUSSION 

In this section, the proposed technique is applied to both 
nonlinear model and the linearized discrete time version. 
The MATLAB Optimization Toolbox is used in the 
simulations and numerical results of this work. 

A. Simulation Procedure 

The obtained results for both systems shows the 
efficiency of the developed controller to stabilize the system 
and ensures the positive invariance of the state constraints 
while input fuel rate remains bounded to avoid the saturation 
of the actuator along the trajectory of the closed loop system. 
The simulation steps can be summarized as follow: 

Step 1: Select the inlet condition then find the operating 
point of the nonlinear system by solving 𝑓𝑓(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3,𝑤𝑤) =  0. 

The applied minimal and maximal parameter and 
disturbance values are given in [25, 26]. Atypical inlet 
condition point has been selected to be: 

 Inlet temperature        𝑇𝑇1 = 288.16    𝐾𝐾  
Total inlet pressure 𝑃𝑃1 = 1.01325 × 105𝑃𝑃𝑙𝑙  
The required torque   𝑀𝑀𝑓𝑓𝐶𝐶𝑙𝑙𝑑𝑑 = 75 𝑁𝑁𝑚𝑚 
Rotational speed         𝑑𝑑 = 750   (1/sec) 

Step 2: Shift the system variables around the operating 
point to build the polytope 𝒫𝒫. The static operating point is 
obtained by finding the static solution of the nonlinear 
equations (13-15).                       

𝑧𝑧𝑇𝑇(0) = [0.76639 , 2.2059,1]                     (38) 

Consequently, the obtained input fuel rate is  𝑤𝑤(0) =
0.003996 . Hence, the dynamic system has the following 
physical operating domain: 

0.4387 ≤  𝑧𝑧1 ≤ 1.2009                               (a) 

1.5281 ≤ 𝑧𝑧2 ≤ 3.2138                              (b) 

0.8667 ≤ 𝑧𝑧3 ≤ 1.1111(c)                     (39) 

The mass fuel rateis bounded: 

0 ≤ 𝑤𝑤(𝑑𝑑) ≤ 0.0123                               (40) 

The origin of the model variables𝑧𝑧(𝑑𝑑) and input control 
𝑤𝑤(𝑑𝑑) are shifted around the operating point 𝑧𝑧𝑇𝑇(0) =
(0.76639 2.2059 1)  , hence, both the state and input 
constraints will be as follow:  

−0.3277 ≤ 𝑚𝑚1(𝑘𝑘) ≤ 0.4345                        (a) 

−0.6778 ≤ 𝑚𝑚2(𝑘𝑘) ≤ 1.0079                       (b) 

−0.1333 ≤ 𝑚𝑚3(𝑘𝑘) ≤ 0.1111     (c)              (41) 

And the control input fuel rate is shifted to: 

−0.0040 ≤ 𝑓𝑓(𝑘𝑘) ≤ 0.0083                          (42) 

Hence, the state constraints polytope𝒫𝒫created from the 
set of constraints shown in (39) i.e. 

Step 3: linearize the nonlinear model around the 
operating point to compute 𝐴𝐴 and 𝐵𝐵 matrices 

By substituting in the first-order Taylor differential 
matrices (25) with the operating 
point  𝑧𝑧𝑇𝑇(0) = (0.76639 2.2059 1) , leads tothe 
linearized continuous time matrices will be as follows i.e. 

𝐴𝐴 = �

−0.1576 −0.2438 0.9155

1.0197 −1.2017 1.9574

−0.0287 0.0418 −0.0933

�, 𝐵𝐵 = �

1.0

163.87

0

� 

(42) 

The obtained continuous time linear state space model 
(42) is stable around the operating point and the open loop 
system eigen values are real stable poles: 

𝜆𝜆1 =  −0.8874, 𝜆𝜆2 =  −0.5512 𝑙𝑙𝑑𝑑𝑑𝑑 𝜆𝜆3 = −0.0140. 

Step 4: discretize the continuous time system using 
suitable sampling time 𝑇𝑇𝑠𝑠and compute discrete time matrices 
Φ andΓ. 

The model (42) is discretized with a sampling period𝑇𝑇𝑠𝑠 = 
2.5 sec. And the discrete time matrices of the linearized 
model (29) form  
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Φ = �
0.4327 −0.0844  1.0205
0.4603 0.0137 2.0889
−0.0034 0.0312 0.8801

�,Γ = �

 −36.5639

118.7188

9.5908

� 

(43) 
Step 5:the positive invariance technique is applied to 

find the state feedback control law 𝐹𝐹𝑇𝑇  by solving the 
optimization problem (36). 

𝑓𝑓(𝑘𝑘) = (−0.00048134  − 0.00304685  
− 0.0052841619)𝑚𝑚(𝑘𝑘) 

(44) 
The obtained state feedback guarantees the stability of 

the overall discrete time system where the closed loop eigen 
valuesare found to be:   𝜆𝜆1 = −0.3631,   𝜆𝜆2 = 0.4891  and 
𝜆𝜆2=0.8057. 

Step 6: stabilizing both discrete time and nonlinear 
systems by using the obtained feedback control law then 
simulate them for the selected initial condition. Both the 
discrete model and the nonlinear model are simulated under 
the obtained state feedback controller (44) and  the initial 
conditions are choosen to be the vertices of the state 
constraints polytope to achieve the results oflamma.1 

B.  Results for Discrete Time Model  

For more illustration, Fig 2 illustrates the response of the 
closed loop when applying the control law (44) on the 
discrete-time system model (43) when the initial state 
starting from  

 𝑚𝑚𝑇𝑇(0) = (−0.3277 −0.6778 −0.1333). 

 
Fig .2-a the normalized mass in combustor chamber  𝑚𝑚1(𝑘𝑘) 

Fig .2-b the normalized inlet turbine pressure 𝑚𝑚2(𝑘𝑘) 

 
Fig .2-cthe normalized rotational speed 𝑚𝑚3(𝑘𝑘) 

 
Fig .2.d the fuel mass rate 𝑓𝑓(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑚𝑚(𝑘𝑘) 

The proposed state feedback controller fulfills the 
stability of the origin while the input control is bounded 
under the prefixed control bounds (42). It is obvious also 
that, similar results and figures can be obtained when the 
proposed state feedback controller is applied to any vertex of 
the state constraints polytope 𝒫𝒫. 

C. Results for the Nonlinear Model  

This section presents the simulation and numerical 
results based on the state feedback controller (44) when 
applied on the nonlinear gas turbine model (13-15).From 
equation (23); there exists a constant value for the control 
input 𝑓𝑓(𝑘𝑘)  where the first-order Taylor expansion of the 
nonlinear system takes the following form:  

�̇�𝑧(𝑑𝑑) = 𝐴𝐴(𝑧𝑧 − 𝑧𝑧𝐶𝐶) + 𝐵𝐵(𝑤𝑤 −𝑤𝑤𝐶𝐶) + 𝐻𝐻.𝑂𝑂.𝑇𝑇         (45) 

The closed loop system of the discrete time system 

𝑚𝑚(𝑘𝑘 + 1) = (Φ + Γ𝐹𝐹𝑇𝑇)𝑚𝑚(𝑘𝑘) + 𝐻𝐻.𝑂𝑂.𝑇𝑇           (46) 

Then the control input 𝑓𝑓(𝑘𝑘) for the linearized system: 

𝑓𝑓(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑚𝑚(𝑘𝑘)  ⟹  𝑤𝑤�(𝑘𝑘) − 𝑤𝑤𝐶𝐶 = 𝐹𝐹𝑇𝑇(𝑧𝑧(𝑘𝑘) − 𝑧𝑧𝐶𝐶) 
𝑤𝑤�(𝑘𝑘) = 𝑤𝑤𝐶𝐶 + 𝐹𝐹𝑇𝑇(𝑧𝑧 − 𝑧𝑧𝐶𝐶) ⟹ 

𝑤𝑤�(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑧𝑧(𝑘𝑘) + 𝑣𝑣𝐶𝐶 = 𝑓𝑓(𝑘𝑘) + 𝑣𝑣𝐶𝐶(47.a)  
Where 𝑣𝑣𝐶𝐶 = 𝑤𝑤𝐶𝐶 − 𝐹𝐹𝑇𝑇𝑧𝑧𝐶𝐶  is the static value of the control 
input 𝑓𝑓(𝑘𝑘) for the initial conditions. The steady state value 
of the normalized mass fuel rate was 𝑤𝑤𝐶𝐶 = 0.0039962, then 
the static value of the control input for the initial condition 
in Step 1. 

𝑣𝑣𝐶𝐶 = 0.0039962 − 𝐹𝐹𝑇𝑇 �
0.76639
2.2059

1
� =0.01567718(47.b) 
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Fig .3 closed loop block diagram of the nonlinear system by using MATLAB Simulink 

Figure 4, shows the continuous time version of the 
nonlinear system variables(𝑑𝑑), and the input control𝑤𝑤(𝑑𝑑). 
Moreover, the results depicted in Fig.4, show the efficiency 
of the proposed control when simulating the nonlinear 
system under the obtained control law. The system state 
trajectories starting from boundary of the state constraints 
and the results prove that the state trajectories remain within 
the operating along the trajectories of the closed loop 
nonlinear system without violating the input control limits. 
Moreover, similar results can be obtained when the initial 
conditions are changed to any point lying in the operating 
range (39) of the nonlinear gas turbine model. 

Fig .4-a mass in combustion chamber𝑧𝑧1(𝑑𝑑) 

Fig.4-b turbine total inlet pressure𝑧𝑧2(𝑑𝑑) 

Fig .4-c rotational speed 𝑧𝑧3(𝑑𝑑) 

-C-

uo-Fxo

Zero-Order
Hold

Turbine Pressure 

288.16

Tr

Scope1

Scope

In S/H

Sample
and Hold2

In S/H

Sample
and Hold1

In S/H

Sample
and Hold

Rotional Speed

Rate of Mass Fuel

Pulse
Generator

1.01325e5

Pr

Mf uel

Tr

Mload

Pr

Mcombr

P3r

nr

Nonlinear plant

75

Mload

-K-

Gain2

-K-

Gain1

-K-

Gain
Combustor Mass



Journal of Control Engineering and Technology (JCET) 

JCET Vol. 4Iss. 1January 2014 PP. 66-75 www.vkingpub.com © American V-King Scientific Publish 
73 

 

Fig .4-d mass fuel rate𝑤𝑤 = �̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�̇�𝑚𝑟𝑟
≅ 𝑤𝑤�(𝑘𝑘) = 𝐹𝐹𝑇𝑇𝑧𝑧(𝑑𝑑) + 𝑣𝑣𝐶𝐶 . 

VI. CONCLUSION 

A linear state feedback controller for a linearized 
discrete time of a low-power gas turbine version is designed 
under state constraints while the mass fuel rate is bounded 
under prefixed fuel limits along the closed loop trajectories. 
The main idea focuses on how to make the system 
constraints polytope in the state space positively invariant 
without violating the input control bounds. The nonlinear 
model of the gas turbine is linearized around the operating 
point and the obtained continuous time is discretized with a 
suitable sampling time period.The positive invariance 
property of the constraints polytope leads to set of linear 
inequalities can be solved by using an optimization 
technique. A linear programming approach is adopted and 
an objective function is proposed that guarantees the 
positive invariance of the state constraints polytope and 
improves the eigen values of the closed loop system. 

The proposed technique is applied to the discrete time 
model and fulfills the required constraints without violating 
the input control bounds. Moreover, the obtained state 
feedback controller is applied to the nonlinear system and 
proved its efficiency when used in stabilizing the practical 
nonlinear system. The simulations of the nonlinear system 
show good results in controllingtheplant fulfill the required 
performance. Operating conditions are sources for 
uncertainties and disturbances in the gas turbine system. 
Future work is dedicated towards design robust constrained 
state feedback controller to stabilize gas turbine system 
under a wide range of operating conditions and improve 
asymptotic stability of the plant. 
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APPENDIX A 

I. NOMENCLATURE OF THE TURBINE MODEL 

Variables/Constants Subscripts 
Aarea [m] 
M       torque [Nm] 
𝒬𝒬𝑓𝑓 lower thermal value of fuel [J/kg] 
R        specific gas constant [J/ (kg K)] 
T        temperature [K] 
U      internal energy [J] 
V       volume [𝑚𝑚3] 
C     specific heat [J/ (kg K)] 
M mass [kg] 
N rotational speed [1/s] 
P pressure [Pa] 
T time [s] 
𝑙𝑙1,𝑙𝑙2 coefficients of �̇�𝑚𝐶𝐶  [𝑠𝑠] 
𝑙𝑙3,𝑙𝑙4 coefficients of �̇�𝑚𝐶𝐶  [−] 
𝐶𝐶𝑚𝑚 , 𝑚𝑚 = 1, … , 4 coefficient of �̇�𝑚𝑇𝑇[𝑠𝑠] 
𝛽𝛽specific par. of air & gas [√𝐾𝐾𝑠𝑠/𝑚𝑚] 
𝜂𝜂efficiency [-] 
Θinertial moment [kg 𝑚𝑚2] 
𝛾𝛾adiabatic exponent [-] 
𝑃𝑃the matrix where 𝒫𝒫 = 𝑚𝑚𝐶𝐶𝑑𝑑𝑣𝑣(𝑃𝑃) 
𝑆𝑆substochastic matrix 
𝜇𝜇spectral radius of a matrix 
𝒫𝒫thepolytope of the state constraints 
�̇�𝑚mass flow rate [kg/s] 

0         inlet duct inlet 
1         compressor inlet 
2         compressor outlet 
3         turbine inlet 
4         turbine outlet 
C         refers to compressor 
Comb refers to combustion chamber 
Comb refers to combustion 
Fuel      refers to fuel 
I refers to inlet duct 
Mech    mechanical 
N         refers to gas deflector 
P          refers to constant pressure 
T         refers to turbine 
𝜈𝜈 refers to constant volume 
𝐻𝐻.𝑂𝑂.𝑇𝑇  Higher Order Terms 
Superscripts 
Tot refers to a total quantity 
𝐶𝐶 refers to dimensionless quantity 

Table II: States, input, output and inlet condition variables 

Notation Variable name/Units 

n           rotational speed [1/s] 

𝑀𝑀𝑓𝑓𝐶𝐶𝑙𝑙𝑑𝑑 load torque [Nm] 

�̇�𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 mass flow rate of fuel [kg/s] 

𝑇𝑇4
𝑑𝑑𝐶𝐶𝑑𝑑 turbine outlet total temperature [K] 

𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶 mass in combustion chamber [kg] 

𝑝𝑝1
𝑑𝑑𝐶𝐶𝑑𝑑 compressor inlet total pressure [Pa] 

𝑝𝑝3
𝑑𝑑𝐶𝐶𝑑𝑑 turbine total inlet pressure [Pa] 

𝑇𝑇1
𝑑𝑑𝐶𝐶𝑑𝑑 compressor inlet total temperature [K] 

 

Table III: Constants of the simplified model of the DEUTZ T216 type 
turbine [25] 

Not.   Value (Units) Not.  Value (Units) 

𝑅𝑅        287 (𝐽𝐽/𝑘𝑘𝑘𝑘 𝐾𝐾) 𝛽𝛽    0.0404184 (√𝐾𝐾𝑠𝑠/𝑚𝑚) 

     𝐶𝐶𝑝𝑝      1004.5 (𝐽𝐽/𝑘𝑘𝑘𝑘 𝐾𝐾)   𝐶𝐶𝑣𝑣     717.5   ( 𝐽𝐽/𝑘𝑘𝑘𝑘 𝐾𝐾) 

𝛾𝛾       1.4 𝜁𝜁    0.028071 (√𝐾𝐾𝑠𝑠 ) 

𝒬𝒬𝑓𝑓        42.8  (𝑀𝑀𝐽𝐽/𝑘𝑘𝑘𝑘) 𝑇𝑇𝐶𝐶   288.16   ( 𝐾𝐾) 

𝐴𝐴1   0.0058687 ( 𝑚𝑚2)   𝐴𝐴1    0.0117056 (𝑚𝑚2) 

     𝜎𝜎𝑁𝑁       0.96687   𝜎𝜎𝐼𝐼     0.98879 

     𝜎𝜎𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶    0.93739  

𝜂𝜂𝐶𝐶         0.67585   𝜂𝜂𝑇𝑇         0.85677 

𝜂𝜂𝑚𝑚𝐶𝐶𝑚𝑚𝐶𝐶   0.79161   𝜂𝜂𝑚𝑚𝑓𝑓𝑚𝑚 ℎ       0.9801 

Θ     .0004  (𝑘𝑘𝑘𝑘 𝑚𝑚2)  𝑉𝑉𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶      0.005675 (𝑚𝑚3) 

𝑙𝑙1     0.00035319 (𝑠𝑠)  𝑙𝑙2     0.0011097 (𝑠𝑠) 

𝑙𝑙3     − 0.4611  𝑙𝑙4    0.16635 

    𝐶𝐶1     − 0.033728  𝐶𝐶2    0.004458 

𝐶𝐶3    0.048847  𝐶𝐶4       0.15542 
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