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• New algorithm for distributed self-tuning synchronization of multi-agent systems.
• Error between velocity of an agent and the average of its neighbors is minimized
• Algorithm generates nonnegative and primitive inter-agent coupling matrix.
• The agent velocities converge toward same constant value.
• Velocities converge sufficiently fast so that distances between agents are bounded.
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a b s t r a c t

The problem of self-tuning of coupling parameters in multi-agent systems is considered. Agent dynamics
are described by a discrete-time double integrator with unknown input gain. Each agent locally tunes
the strength of interaction with neighboring agents by using a normalized gradient algorithm (NGA). The
tuning algorithm minimizes the square of the error between an individual agent’s state (velocity) and
the one step delayed average of its own state and the states of its neighbors. Assuming that the network
graph is strongly connected, it is proved that the sequence of coupling parameters is convergent and all
velocities converge toward the same constant value.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Synchronization processes represent a form of emergence in a
population of networked systems. This intriguing phenomenon of
collective behavior is observed in natural and man made systems
in biology, chemistry, physics and engineering, as well as in the
arts and socials contexts. Winfree [1] assumed that a rhythmical
coherent activity of a group can bemodeled by a population of self-
sustained and interacting oscillatory elements. One of the most
popular models was proposed by Kuramoto [2] who considered a
collection of limit-cycle oscillators each running at a different nat-
ural frequency, and coupled via a sine function of their phase differ-
ences. Generally speaking, Kuramoto oscillators synchronizewhen
individual frequencies lock onto some common value. A compre-
hensive list of references on the subject of synchronization in os-
cillatory networks can be found in recent surveys [3–5]. Closely
related to and often overlapping with synchronization is the so
called consensus problem. As stated in [6], a group of interacting
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dynamical systems (networked agents) achieves consensus when
agreement is reached with respect to a certain variable that de-
pends on the state of all of the agents. One of the first formal consid-
erations of consensus describes how a group of individuals might
reach agreement on a common probability distribution by pool-
ing their individual opinions [7]. The work by Vicsek et al. [8] can
be considered a motivational paper for many results in the area
of consensus and presents a simple model of autonomous agents
all moving in a plane with the same speed and different head-
ings. Each agent adjusts its heading based on the average of the
neighbors’ headings including its own. Jadbabaie et al. [9] present
a formal analysis for a distributed coordination model proposed
in [8]. One of the first analytically rigorous formulations and treat-
ments of consensus can be found in [9,10]. In the last fifteen years
a large number of interesting results covering a variety of consen-
sus aspects have been published. Topics such as distributed opti-
mization and task assignments, coordination in swarms and flock
formation, sensor fusion, and distributed estimation and control,
have been extensively studied. A large number of references are
given in survey papers [6,11–13], as well as in recently published
researchmonographs [14–16]. These references consider a diverse
set of issues such as the presence of noise and delay in communica-
tion links between agents, time varying topologies, asynchronous
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updating of agent states, quantization effects, and nonlinear dy-
namics. The following paragraphs provide a brief review of recent
approaches to adaptive consensus.

Recent work on adaptive consensus: One of the earlier works
on adaptive synchronization in dynamical networks is [17]. The
authors assume that the synchronous solution of the overall au-
tonomous network is known and is global information to be
tracked by individual agents as a reference trajectory. The local
control input is proportional to the error between the agent state
and the reference trajectory. The authors prove that this error con-
verges to zero. Similar results are presented in [18]. The assump-
tion that the synchronous solution is known or that it is bounded
is restrictive. In [19] the proof of global synchronization uses a cir-
cular condition related to adaptively changing coupling gains. This
reference requires that a certainmatrix dependent on the coupling
gains is negative semidefinite at all times t > 0. In [20] the prob-
lem of steering a group of agents to a predefined reference velocity
is considered. The reference velocity is known to the leader. It is
also assumed that the reference velocity model is linear with re-
spect to unknown parameters and known base functions are avail-
able to each agent. A decentralized adaptive design is proposed by
incorporating relative position and relative velocity feedback. In
[21,22] the authors consider the problem where every agent has
to track a known or estimated leader trajectory. The agent dynam-
ics are linearwith respect to both the unknownparameters and the
known basis functions. The leader trajectory is global information.
The control signals are adaptive with respect to unknown param-
eters of agent dynamics. The inter-agent coupling parameter is a
nonadaptive predefined constant whose value is global informa-
tion and is the same for all agents. The local input signal resembles
a high-frequency gain feedback in decentralized control methods.
In [23] the authors analyze the undirected graph topology, and as-
sume that the high frequency gain (parameter multiplying agent
input signal) is known, and it is the same for all agents. They proved
the interesting result that each agent state converges toward the
average of its neighbors’ states. In [24] the consensus problemwith
a general linear model and Lipschitz nonlinear dynamics is consid-
ered. The authors analyze an undirected graph and assume that the
linear dynamics are known. The proposed consensus protocol can
be implemented in a distributed fashion. A continuous time con-
sensus problem of second order systems governed by a directed
graph is considered in [25]. The authors show that the error be-
tween any two agent positions converges to zero. They also show
that in case of absolute velocity damping all velocities converge
to zero, while in the case of relative velocity damping the differ-
ence between agent velocities converges to zero. In recent work
by Chen et al. [26] continuous time adaptive consensus with un-
known identical control directions is considered. The authors an-
alyze an undirected graph and show that the difference between
agent states tends to zero.

In [27] the authors consider the finite time leader following
problem of multi-agent systems whose dynamics is linear with
respect to unknown parameters and known basis functions. Sim-
ilarly as in [21,23] the inter-agent coupling parameters are non-
adaptive, pre-calculated and same for each agent. The leader
following is achieved in a finite time. In [28] the consensus prob-
lem of networked mechanical systems with time-varying delay
and jointly connected topologies is considered. Similarly as in
[21,22,27] it is assumed that the high-frequency gain is known,
and the inter-agent coupling term in the consensus protocol is
non-adaptive with a fixed gain whose value is the same for all
agents. In [29] the authors investigate the cooperative control
of networked agents with unknown control directions. Assum-
ing undirected graph topology they propose interesting Nussbaum
type adaptive controller, and showed that all signals are bounded.
They also prove that the difference between any two agent states
asymptotically goes to zero. Note that this statement does not im-
ply that all agent states have finite limit.

Contribution and organization: Here we consider a network
of heterogeneous agents whose dynamics are described by a
double integrator discrete timemodel with input gain of unknown
magnitude. Motivated by the evolution of flocks in biology, or the
engineering problem of control of formations of unmannedmobile
agents,we set out to find an algorithm for each agent to locally tune
the inter-agent coupling parameter so that (i) all agent velocities
converge to the same value, and (ii) the distance between any
two agents converges to a finite limit without using a predefine
reference (velocity or position) trajectory.

The proposed algorithm is a normalized gradient recursion
based onminimizing the square of the error between an agent state
and the one step delayed average of the state’s of its neighbors. In
the following we list our contribution relative to the recent work
of Junmin and Xudong [29]. Ref. [29] considers continuous-time
adaptive consensus; we analyze discrete-time adaptive consensus.
In [29] the consensus algorithm is constructed based on the
Lyapunov function argument while our algorithm is a normalized
gradient scheme derived by minimizing a certain quadratic cost
function and it is different than the algorithm in [29]. We consider
double integrator discrete-time dynamics, while in [29] a single
integrator continuous-time system is discussed. Ref. [29] analyzes
an undirected graph while we consider a more general directed
graph topology. In [29] it is shown that agent states are bounded
and the error between any two agents states goes to zero. Note
that this statement does not imply that all agent states have a
limit. We prove that all agent states converge to the same value.
In [29] it is shown that the coupling parameters are bounded,
not necessarily convergent functions. We prove that the coupling
parameters are convergent sequences. In addition we show that
the distance between any two members of the group converges
toward a finite limit.

The paper is organized as follows. Section 2 presents the
problem formulation. Section 3 presents the proposed algorithm.
Analysis of the algorithm is presented in Section 4. A simulation
example is given in Section 5. We use the following notation: ℜ

denotes the set of real numbers; the superscript T denotes the
transpose of a matrix; ρ(A) denotes the spectral radius of matrix
A; ∥x∥ is the Euclidean norm of vector x, and sgn(a) is the sign
function of a real number a. Furthermore, ℓ is used to denote a
vector with all entries equal to one, i.e., ℓT = [1, 1, . . . , 1]. When
performing majorizations and in certain upper bounds, ci, i =

1, 2, . . . is used to denote nonnegative constants whose values are
unimportant.

2. Problem statement

Consider a cooperative group of N agents where the dynamics
of the ith agent are described by the following discrete time system

xi(t + 1) = xi(t)+ vi(t) (1)
vi(t + 1) = vi(t)+ βiui(t), i = 1, . . . ,N (2)

where time t ≥ 0 takes on nonnegative integer values, xi(t) ∈ ℜ

and vi(t) ∈ ℜ are the position and velocity respectively, while
ui(t) ∈ ℜ is the control signal or consensus protocol of the agent. In
(2) βi ∈ ℜ is an unknown input gain. The model defined by Eq. (2)
can be thought of as a discrete time version of a kinematic model

d
dτ
vi(τ ) =

1
mi

ui(τ ), τ ≥ 0,

for i = 1, . . . ,N , where vi(τ ) is velocity and ui(τ ) is driving force
of the ith agent respectively, while mi is its mass. Then param-
eter βi in (2) can be interpreted as an inverse of mi. Inspired by
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flocking behavior, model (1), (2) is simple and effective and can be
a useful tool in explaining synchronous behavior in biological sys-
tems or used in applications such as robot formation control. The
communication topology of the above network of agents is rep-
resented by a directed graph G = (V, E) with the set of nodes
V = {1, 2, . . . ,N} and E ⊆ V × V is the set of edges or com-
munication links. The node i represents the agent i, and ordered
pairs (i, j) i ≠ j denote edges, where (i, j) ∈ E if and only if the
agent i can directly receive information from the jth agent. The set
of neighbors of node i is denoted by Ni = {j ∈ V | (i, j) ∈ E}.

It is plausible to assume that in natural phenomena such as
flocks, each agent adjusts its velocity so that it is as close as
possible to the average of the velocities of its neighbors, i.e. ui(t)
is proportional to the local velocity mismatch defined by

ϕi(t) = v̄i(t)− vi(t) (3)

where

v̄i(t) =
1

1 + Ni


j∈N ′

i

vj(t) (4)

where Ni is the cardinality of Ni, and N ′

i = Ni ∪ {i}. Thus

ui(t) = θi(t)ϕi(t), (5)

where θi(t) ∈ ℜ is the coupling parameter. In the next section we
develop a tuning rule for θi(t) so that all agent velocities converge
toward the same value. By substituting (5) in (2) we arrive at the
following evolution of vi(t),

vi(t + 1) = vi(t)+ βiθi(t)ϕi(t), 1 ≤ i ≤ N. (6)

Now that we have derived model (6) we can relate multi-agent
velocity consensus to frequency synchronization problems in
linearly phase coupled oscillators described by

ẋi(τ ) = Ωi + Ki
1

1 + Ni


i∈N ′

i


xj(τ )− xi(τ )


, i ∈ V (7)

where xi(τ ) is the phase of the ith oscillator, Ωi is its natural
frequency and Ki is the coupling gain. Let frequency ẋi(τ ) at time
τ = tTs, t = 0, 1, 2, . . . , be approximated by

d
dτ

xi(τ )

τ=tTs

=
xi((t + 1)Ts)− xi(tTs)

Ts

where Ts is the sampling interval. Then from (7) we can write

vi(t + 1) = ΩiTs + θiψi(t) (8)

vi(t + 1) = xi(t + 1)− xi(t), vi(0) = ΩiTs (9)

where

ψi(t) =
1

1 + Ni


j∈N ′

i

(xj(t)− xi(t)) (10)

and θi = KiTs. The initial condition vi(0) is determined so that
vi(t) = 0 and xi(t) = 0 for all t < 0. Note that for the sake of
simpler notation the constant Ts has been omitted in signal argu-
ments, i.e., xi(tTs) = xi(t), t ≥ 0. Obviously we can think of vi(t)
as the ‘‘normalized frequency’’ at a discrete time t . Since from (3),
(4) and (11), ϕi(t) = ψi(t) − ψi(t − 1) Eq. (8) can be written as
vi(t + 1)− vi(t) = θiϕi(t), vi(0) = ΩiTs, i ∈ V , which is the same
as consensus model (6).
3. Normalized gradient algorithm for self-tuning consensus

In this section we develop the algorithm for tuning coupling
parameters θi(t), t ≥ 0, i ∈ V . Observe that Eq. (6) can be written
in compact form as

v(t + 1) = W (t)v(t) (11)

where v(t) is given by

v(t)T = [v1(t), . . . , vN(t)] (12)

andW (t) is a N ×N matrix of coupling weights defined as follows:

W (t) = [wij(t)], wij(t) =


βiθi(t)

1
1 + Ni

, j ∈ Ni,

1 − βiθi(t)
Ni

1 + Ni
, j = i

0, otherwise.

(13)

In most literature on consensus theory, W (t) is a non-negative
row stochastic matrix. We now develop an algorithm for agent i
to locally tune coupling θi(t), i ∈ V so that W (t) is a nonnegative
matrix thatwill guarantee vi(t) → vc as t → ∞, for some finite vc .
Agent i ∈ V tunes coupling parameter θi(t) so that the following
local cost function is minimized.

Ji(θi) =
1
2


vi(t + 1)− ¯̄vi(t + 1)

2
, i ∈ V (14)

where ¯̄vi(t + 1) represents the one step delayed weighted average
of the ith agents neighbors’ velocities, including its own velocity
i.e.,

¯̄vi(t + 1) =

N
j=1

mijvj(t) (15)

where

mij =


1 − αi

1 + Ni
, j ∈ Ni, 0 ≤ αi < 1

αi +
1 − αi

1 + Ni
, j = i

0, otherwise.

(16)

By virtue of the fact that from (6) and (14) the gradient of Ji(θi)with
respect to θi(t) is

∂ Ji(θi)
∂θi(t)

=

vi(t + 1)− ¯̄vi(t + 1)


βiϕi(t),

θi(t) can be tuned by the following recursive procedure

θi(t + 1) = θi(t)− βiϕi(t)

vi(t + 1)− ¯̄vi(t + 1)


, i ∈ V. (17)

However, since βi is unknown, instead of (17) agent i can use
the following normalized gradient algorithm

θi(t + 1) = θi(t)−
µi

ri(t)
sgn(βi)ϕi(t)ei(t + 1), i ∈ V (18)

where it is assumed that sgn(βi), the sign of βi is known, µi > 0 is
the algorithm step size, ϕi(t) is the local velocitymismatch defined
by (3), ei(t + 1) is the cost function error given by

ei(t + 1) = vi(t + 1)− ¯̄vi(t + 1) (19)

with ¯̄vi(t + 1) defined by (15), and ri(t) being the gradient
normalizer given by

ri(t) = 1 + ϕi(t)2, 1 ≤ i ≤ N. (20)

The role of ri(t)will become clear whenwe analyze global stability
of (18). Recursion (18) starts with some finite initial condition
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θi(0). Because of its simplicity, Eqs. (3), (6) and (18) can be viewed
as an effective model to explain how the process of tuning the
interaction strengths among agents, lead toward synchronous
behavior. It is obvious from (15) that when calculating ¯̄vi(t + 1)
agent i assigns more weight to its value than to any individual
neighbor. When in (16) αi = 0, the average ¯̄vi(t + 1) becomes
equal to the uniformly weighted average. In the next section we
show that W (t) in Eq. (13) will be a nonnegative matrix if in (16)
αi ≥ 1/2, ∀i ∈ V . It is not difficult to see that both averages v̄i(t)
and ¯̄vi(t + 1) are related as follows:

¯̄vi(t + 1) = αivi(t)+ (1 − αi)v̄i(t). (21)

For the sake of clarity of the analysis in the next section, we
introduce the followingdefinitions regarding leaderless consensus.

Definition 1. A multi-agent system defined by (6) and (18)
achieves wide-sense consensus if

lim
t→∞


vi(t)− vj(t)


= 0, ∀i, j ∈ V. (22)

Obviously (22) does not imply that {vi(t)}, t ≥ 0 is a bounded or
convergent sequence. For example, if we consider the following
sequences: vi(t) = log(t + i), or vi(t) = (−1)t +

i
t , or vi(t) =

cos(log(t + i)), i ∈ V , we see that (22) holds for all of them an yet
limt→∞ vi(t) does not exist. For this reason we define a stronger
type of consensus.

Definition 2. A multi-agent system achieves strict-sense consen-
sus if (22) holds and limt→∞ vi(t) = vc, ∀i ∈ V for some
finite xc .

In the next section we demonstrate that the coupling param-
eters {θi(t)}, t ≥ 0, i ∈ V are convergent sequences. We also
prove that limt→∞ vi(t) exists,∀i ∈ V , thus our algorithm achieves
strict sense consensus as previously defined. In [29] it is shown that
the states are bounded, but their convergence is not established.
Another contribution of our paper is the proof that the distance
xi(t)− xj(t) between any twomembers of the group converges to-
ward a finite limit as t → ∞. In case of adaptive consensus, this
is not a straightforward conclusion. This can be seen from Eq. (1)
which gives xi(t) − xj(t) = xi(0) − xj(0) +

t
k=0(vi(k) − vj(k)),

from where it is obvious that xi(t)− xj(t)may diverge despite the
fact that vi(t), i ∈ V is a convergent sequence. The distance will
converge only if vi(t)− vj(t) converges to zero sufficiently fast.

4. Stability and convergence of the self-tuning consensus

We first show that sequences {ei(t)} and {ϕi(t)}, t ≥ 0 gen-
erated by the algorithm (18)–(20) along with system dynam-
ics (6) have finite total energies for all finite initial conditions
θi(0), xi(0), vi(0), 1 ≤ i ≤ N . In this paper we make use of the
following assumptions.

Assumption A1. The underlying directed graph G is strongly
connected.

Assumption A2. The sign of βi and the upper bound βimax of |βi|

are known to agent i. The step sizeµi in (14) satisfiesµi < 2/βimax,
for all i = 1, . . . ,N .

Define vector

e(t)T = [e1(t), . . . , eN(t)] . (23)

Then from (12), (15) and (19) we can write

v(t + 1) = Mv(t)+ e(t + 1) (24)
whereM is the N ×N matrix given byM = [mij]with elementsmij

defined by (16). By using the fact that
N

j=1 mij = 1 for all i ∈ V , we

conclude that λ1 = 1 is an eigenvalue ofM with the corresponding
right eigenvector ℓ = (1, . . . , 1)T. Since M is a stochastic matrix,
λ1 is its maximal eigenvalue [30, p. 83]. By virtue of the fact
that the underlying graph G is strongly connected, nonnegative
matrix M is irreducible implying that λ1 is an algebraically simple
eigenvalue [31, Theorem 8.4.4, p. 508]. It is worth mentioning that
this statement is also known as the Perron–Frobenius theorem,
and it is a generalization of Perron’s results for positive matrices
to nonnegativematrices. Furthermore, if the nonnegativematrix is
irreducible and anymain diagonal element is positive, suchmatrix
must be primitive [31, see Theorems 8.5.2 and 8.5.10, p. 516]. This
implies thatM has only one eigenvalue of maximummodulus.

Let λ1 ≥ |λ2| ≥ · · · ≥ |λN | be the ordered eigenvalues of M .
Since the maximal eigenvalue λ1 = 1 is simple, we have |λi| < 1
for 2 ≤ i ≤ N . Let yM be the left eigenvector of M corresponding
to λ1 = 1, and normalized so that ℓTyM = 1. Based on the above
discussion matrixM can be decomposed as follows:

M = M1 + ℓyTM , yTMℓ = 1 (25)

where M1ℓ = 0, yTMM1 = 0 and the spectral radius ρ(M1) < 1.
Then from (24) we can derive

v(t + 1) = M1v(t)+ ℓyTMv(t)+ e(t + 1). (26)

Define

L(q−1) =

I − q−1M1

−1
(27)

where q−1 is the unit delay operator. Sinceρ(M1) < 1 andM1ℓ = 0
we have


I − q−1M1

−1
ℓ =


I +


∞

k=1 M
k
1


ℓ = ℓ. Then (26) gives

v(t + 1) = ℓyTMv(t)+ L(q−1)e(t + 1) (28)

with L(q−1) being a stable operator due to the fact that ρ(M1) < 1.
The following technical result is needed for future reference.

Lemma 1. Let Assumption A1 hold. Then for all n ≥ 0 and i ∈ V ,

n
t=0

∥φi(t)∥2
≤ c1 + c2

n
t=0

∥e(t)∥2 (29)

where

φi(t) = v(t)− vi(t)ℓ, i ∈ V. (30)

Proof. By using the fact that yTMℓ = 1, from (30) and (28) we have

φi(t + 1) = ℓyTMφi(t)+ ℓ (vi(t)− vi(t + 1))

+ L(q−1)e(t + 1). (31)

Since from (16) mii = 1 −


j∈Ni
mij, it is not difficult to see that

Eq. (15) can be written as follows:

¯̄vi(t + 1) = vi(t)+ aTi φi(t) (32)

where φi(t) is defined by (30) and

aTi = [ai1, . . . , aiN ] , aij =


1 − αi

1 + Ni
, j ∈ Ni,

0, otherwise.
(33)

Substituting (32) in (19) yields

ei(t + 1) = vi(t + 1)− vi(t)− aTi φi(t). (34)
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Then inserting vi(t + 1)− vi(t) from (34) in (31) gives φi(t + 1) =

Qiφi(t)− ei(t + 1)ℓ+ L(q−1)e(t + 1), or

φi(t + 1) = (I − q−1Qi)
−1

[L(q−1)e(t + 1)− ei(t + 1)ℓ] (35)

where Qi = ℓ(yM − ai)T, 1 ≤ i ≤ N . Note that Qi is a rank one
matrix and its only nonzero eigenvalue is ρ1 = ℓT(yM − ai). Since
ℓTyM = 1 and from (33) ℓTai =

1−αi
1+Ni

Ni, we have ρ1 = 1 − ℓTai =

1−αiNi
1+Ni

< 1, where we have used the fact that αi < 1. Hence, all
eigenvalues ofQi are strictly inside the unit circle and consequently
(I − q−1Qi)

−1 is a stable operator. Then from (35) one can derive
n

t=0

∥φi(t + 1)∥2

≤ c3 + c4
n

t=0

ei(t + 1)2 + c5
n

t=0

∥L(q−1)e(t + 1)∥2

where the nonnegative constant c3 is used to account for the
nonzero initial conditions. By virtue of the fact that L(q−1) is a
stable operator, the previous relation implies
n

t=0

∥φi(t + 1)∥2
≤ c3 + c4

n
t=0

ei(t + 1)2 + c6
n

t=0

∥e(t + 1)∥2,

for all n ≥ 0, i ∈ V . Since ei(t) is the ith component of e(t), the
second term on the RHS of the last relation can be absorbed by the
third term to give (29). Thus the lemma is proved. �

The following lemma states that the equilibrium state (ei(t),
ϕi(t)) = (0, 0) of the system dynamics defined by (6), (18)–
(20) is globally asymptotically stable in the sense that ei(t) →

0, (vi(t) − vj(t)) → 0, and consequently ϕi(t) → 0 as t → ∞,
i ∈ V, j ∈ V . By global we mean that the above claim holds for
all initial conditions θi(0), and vi(0), i ∈ V . As a matter of fact
we prove the more general statement that the sequences {ei(t)},
{(vi(t)− vj(t))}, i ∈ V, j ∈ V have finite energies. In addition we
show that limt→∞ θi(t) exists ∀i ∈ V .

Lemma 2. Let Assumptions A1 and A2 hold. Then for all initial
conditions vi(0), xi(0) and θi(0) the algorithm defined by (6), (18)–
(20) provides

(1)
n

t=0

∥e(t + 1)∥2
≤ c7 < ∞, ∀n ≥ 0 (36)

(2)
n

t=0

(vi(t)− vj(t))2 ≤ c8 < ∞, ∀n ≥ 0, ∀i, j ∈ V (37)

(3)
n

t=0

∥v(t + 1)− v(t)∥2 < ∞, ∀n ≥ 0 (38)

(4) lim
t→∞

θi(t) = θ̄i, i ∈ V (39)

for some finite θ̄i.

Proof. Defineθi(t) = βiθi(t)− (1 − αi). (40)

We first show that the error ei(t + 1) defined by Eq. (19) can be
expressed in terms ofθi(t) as follows:

ei(t + 1) =θi(t)ϕi(t), i ∈ V (41)

where ϕi(t) is given by (3). Note that by substituting (21) in (19)
we obtain

ei(t + 1) = vi(t + 1)− αivi(t)− (1 − αi)v̄i(t). (42)
Then substituting (2) into (42) yields

ei(t + 1) = βiui(t)− (1 − αi)ϕi(t) (43)

with ϕi(t) defined by Eq. (3). Eq. (41) follows from Eqs. (5), (40),
and (43). We now focus on the iterative scheme given by Eq. (18).
After multiplying both sides of (18) with βi and subtracting 1 − αi
we can write

θi(t + 1) =θi(t)−
µi

ri(t)
|βi|ϕi(t)ei(t + 1). (44)

Squaring both sides of the previous equation yields

θi(t + 1)2 = θi(t)2 −
2µi

ri(t)
|βi|θi(t)ϕ(t)ei(t + 1)

+ (µiβi)
2 ϕi(t)2

ri(t)
ei(t + 1)2

ri(t)
. (45)

Since by (20) ϕi(t)2/ri(t) ≤ 1, relations (41) and (45) imply

θi(t + 1)2 ≤θi(t)2 − 2µi|βi|


1 −

µi|βi|

2


ei(t + 1)2

ri(t)
. (46)

Define

Vi(t) =θi(t)2 + 2µi|βi|


1 −

µi|βi|

2

 t
k=0

ei(k + 1)2

ri(k)
,

i ∈ V. (47)

Since by Assumption A2, 1 − µi|βi|/2 ≥ 1 − µi|βimax|/2 > 0,
we have Vi(t) ≥ 0, ∀t ≥ 0. Then from (46) and (47) it follows
that Vi(t + 1) ≤ Vi(t), i.e., {Vi(t)} is a nonnegative non-increasing
sequence satisfying Vi(t) ≤ Vi(0) < ∞, ∀t ≥ 0, i ∈ V . Thus from
(47) we can conclude that the following limit exists,

lim
t→∞

t
k=0

ei(k + 1)2

ri(k)
= c9 < ∞, 1 ≤ i ≤ N, (48)

for all t ≥ 0. Note that Vi(t) defined by (47) represents a discrete-
time Lyapunov function for the system described by (41) and (18).
Let

r(t) =

N
i=1

max
0≤τ≤t

ri(τ ). (49)

The following is then obtained from (48) and (49)

t
k=0

∥e(k + 1)∥2

r(k)
≤

N
i=1

t
k=0

ei(k + 1)2

ri(k)
≤ c10 < ∞. (50)

If {r(t)}, t ≥ 0 is a bounded sequence, then statement (36) follows
directly from (50). If r(t) → ∞ as t → ∞, by Kronecker’s
lemma [32, p. 503] we conclude

lim
t→∞

1
r(t)

t
k=0

∥e(k + 1)∥2
= 0. (51)

Note that Eq. (3) can be written in the form

ϕi(t) = bTi φi(t) (52)

where φi(t) is given by (30) and bTi = [bi1, . . . , biN ], with

bij =


1

1 + Ni
, j ∈ Ni,

0, otherwise.
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Then from (20), (52) and (29) we can derive

r(t) ≤

t
k=0

N
i=1

ϕ(k)2 ≤ c11
t

k=0

∥e(k + 1)∥2. (53)

Statement (36) follows from (51) and (53). Observe that Lemma 1
and (36) yield

n
t=0 ∥φi(t)∥2 < ∞, ∀n ≥ 0, i ∈ V . This relation

together with (30) implies (37). Next we prove statement (39).
Define

Ri(t + 1) = µi

t
k=0

1
ri(k)

ϕi(k)ei(k + 1), Ri(0) = 0 (54)

for t ≥ 0. Since from (29), (36) and (52)

t
k=0

ϕ(k)2 ≤ c12 < ∞, ∀t ≥ 0, (55)

by using the Cauchy–Schwarz inequality, from (36) and (55) we
can conclude

|Ri(t)| ≤ µi


t

k=0

ϕi(k)2
1/2  t

k=0

ei(k + 1)2
1/2

≤ c13 < ∞. (56)

Hence Ri(t) is absolutely convergent and Ri(t) → R̄i for some
finite R̄i. On the other hand, from (18) it follows that θi(t + 1) +

Ri(t+1) is time invariant, i.e., θi(t+1)+Ri(t+1) = θi(t)+Ri(t) =

· · · = θi(0)+ Ri(0) from where it follows that limt→∞ θi(t) exists.
Statement (38) directly follows from (6), (39) and (55). Thus the
lemma is proved. �

Note that (37) is stronger than (22) and it implies (22). We now
remark on the role of the normalizer ri(t) in (18). Assume for a
moment that ri(t) is equal to one. Then if at some time instant,
∥ϕi(t)∥2 becomes too large, the third term on the RHS of (45) can
dominate the second term, andθi(t)2 may not be a non increasing
function of time t . In combination with an appropriate choice of
the step size µi, the normalizer ri(t) guarantees that the second
term on the RHS of (45) is larger than the third term, and thusθi(t + 1)2 ≤θi(t)2 for all t ≥ 0 (see relation (46)).

Note that statements (37) and (38) do not imply that {vi(t)}, i ∈

V is a convergent sequence. Next we analyze Eq. (11) and show
that limt→∞ vi(t) = vc for all i ∈ V , and some finite vc . It is impor-
tant to observe that convergence toward a common velocity does
not guarantee that the distance among agents {xi(t)− xj(t)}, i, j ∈

V, i ≠ j is a bounded sequence. For example, if agent velocities
evolve according to vi(t) = vc + i/t, i ∈ V from (1) we can con-
clude that the distance between the ith and jth agent is unbounded,
i.e. xi(t) − xj(t) = Θ(log t), where Θ(log t) signifies that the dis-
tance goes to infinity as log(t). In this paper we demonstrate that
vi(t), i ∈ V converges toward a common vc sufficiently fast such
that the distances between agents remain bounded. We now turn
to Eqs. (11) and (13).

Observe that from (39) it followsW (t) → W as t → ∞, where

W = [w̄ij], w̄ij =


βiθ̄i

1
1 + Ni

, j ∈ Ni,

1 − βiθ̄i
Ni

1 + Ni
, j = i

0, otherwise.

(57)

Hence from (11) we can write

v(t + 1) = Wv(t)+ Wv(t) (58)
with W (t) = W (t)− W → 0 as t → ∞. Before we show that all
velocities converge toward the same value, we demonstrate that
W (t) and W are nonnegative matrices. We prove this under the
following constraint on the initial conditions θi(0), i ∈ V .
Assumption A3. In (18), θi(0) is selected so that θi(0) = θ0i
sgn(βi), 0 < θ0i < 2(1 − αi)/βimax, 1/2 ≤ αi < 1.

Recall that αi is a parameter defining the weight of vi(t) in
the average ¯̄vi(t + 1) given by Eq. (15). The previous assumption
requires αi ≥ 0.5. Then from (15) it is not difficult to see that the
ith agent calculates ¯̄vi(t+1) by including its own value vi(t) in this
average with the weight larger than 0.5. In the following we show
that Assumption A3 is sufficient for the parameter estimator (18)
to produce a θi(t) such thatW in Eqs. (57) and (58) is a nonnegative
row stochastic matrix. (Recall that in (57), θ̄i = limt→∞ θi(t).)

Observe that the previous assumption implies 0 < βiθi(0) =

|βi|θ0i < 2(1 − αi) or |βiθi(0) − (1 − αi)| < (1 − αi). Then from
(46) and (40) we derive

(βiθi(t)− (1 − αi))
2

≤ (βiθi(0)− (1 − αi))
2 < (1 − αi)

2. (59)

Hence

0 < βiθi(t) < 2(1 − αi) (60)

for all t ≥ 0. By continuity, the same holds for θ̄i = limt→∞

θi(t), i.e.

0 < βiθ̄i < 2(1 − αi), 1 ≤ i ≤ N. (61)

ThusW in (57) is a nonnegativematrix. Since by construction it is a
row stochastic matrix, λ1 = 1 is its maximal eigenvalue [30, p. 83].
By the fact that the corresponding graph is strongly connected, W
is an irreduciblematrix. Then by the Perron–Frobenius theorem for
nonnegativematrices, λ1 = 1 is an algebraically simple eigenvalue
(Theorem 8.4.4, p. 508 in [31]). Since wii = 1 − βiθ̄

Ni
1+Ni

> 0 it

follows thatW is a primitive matrix, i.e. it has only one eigenvalue
of maximum modulus (see Theorem 8.5.2, p. 516 and Theorem
8.5.10, p. 520 in [31]).

It is obvious that ℓT = [1, . . . , 1] is the right eigenvector of W
corresponding to λ1 = 1. Let yW be the left eigenvector associated
to the λ1 = 1 eigenvalue and normalized so that ℓTyW = 1. Based
on the above discussion matrixW can be decomposed as follows:

W = W1 + ℓTyW (62)

where

W1ℓ = 0, W T
1 yW = 0, and ρ(W1) < 1 (63)

with ρ(W1) being the spectral radius ofW1. We now show that the
proposed algorithm provides strict-sense consensus.

Theorem 1. Let Assumptions A1–A3 hold. Then

(1) lim
t→∞

vi(t) = vc, |vc | < ∞, 1 ≤ i ≤ N (64)

(2) lim
t→∞


xj(t)− xi(t)


= x̄ij, |x̄ij| < ∞ (65)

for all 1 ≤ i, j ≤ N.

Proof. Let

z(t + 1) = v(t + 1)− ℓyTWv(t) (66)

where yW is the same as in Eq. (62). We first show that

∥z(t + 1)∥ ≤ c14ρt
2, ∀t ≥ 0 (67)

for some 0 < ρ2 < 1 and 0 < c14 < ∞. Then we prove that
statement (64) follows from (67). After substituting (62) in (58) we
obtain

v(t + 1) = W1v(t)+ ℓyTWv(t)+ W (t)v(t). (68)
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Since W1ℓ = 0 and W (t)ℓ =

W (t)− W


ℓ = 0, Eqs. (66) and

(68) imply

z(t + 1) = W1z(t)+ W (t)z(t). (69)

Then

z(t + 1) = T (t, 0)z(0) (70)

where T (t, 0) =
t

k=0


W1 + W (k). Using the fact that W (t) →

0 as t → ∞, and ρ(W1) = 1 − ϵ1 for some 0 < ϵ1 < 1, we can
conclude that the transition matrix T (t, 0) satisfies ∥T (t, 0)∥ ≤

c15(1 − ϵ2)
t for some finite c15 and 0 < ϵ2 < 1 (see for exam-

ple Lemma A.2.13, p. 310 in [33]). Hence from (70) one obtains
∥z(t + 1)∥ ≤ c15(1 − ϵ2)

t , 0 < ϵ2 < 1 for all t ≥ 0. We next
prove statement (64). Note that from (66)

v(t + 1) = P t+1
1 v(0)+

t
k=0

P t−k
1 z(k + 1) (71)

where P1 = ℓyTW and is an idempotent matrix, ı.e. Pk
1 = P1, k ≥ 1.

Then from (71) we have

v(t + 1) = P1v(0)+ P1
t−1
k=0

z(k + 1)+ z(t + 1). (72)

Since by (67)


∞

k=0 z(k+ 1) is an absolutely convergent series, Eq.
(72) implies that limt→∞ v(t) exists. Let limt→∞ v(t) = v̄, ∥v̄∥ <
∞. Then from (30) and (37) we can derive limt→∞ ℓ

Tφi(t) =

limt→∞ ℓ
T (v(t)− vi(t)ℓ) = ℓTv̄ − N limt→∞ vi(t) = 0 or

limt→∞ vi(t) =
1
N ℓ

Tv̄. This proves statement (64). Next we show

the validity of (65). From Eq. (1) it follows that

xi(t + 1)− xj(t + 1) = xi(0)− xj(0)+

t
k=0


vi(k)− vj(k)


(73)

for all i, j ∈ V . Obviously we need to demonstrate that the par-
tial sum on the RHS of (73) is convergent. From (66) we can write
zi(t + 1) = vi(t + 1) − yTWv(t), i ∈ V where zi(t) is the ith
component of the vector z(t). Hence vi(t + 1) − vj(t + 1) =

zi(t + 1) − zj(t + 1) for all i, j ∈ V . Then from (67) one obtains
|vi(t + 1) − vj(t + 1)| ≤ c16ρt

2, ∀t ≥ 0, and 0 < ρ2 < 1, which
together with (73) gives (65). Thus the theorem is proved. �

5. Simulation experiment

Consider a network of six agents characterized by a directed
graphwhose topology is defined by the following adjacencymatrix

Ad =


0 0 1 1 0 1
1 0 0 0 0 0
0 1 0 0 0 1
1 1 0 0 1 0
0 1 1 0 0 0
0 0 1 1 0 0

 .
Ad(i, j) = 1 signifies that agent i directly receives information
from agent j. Ad(i, j) = 0 means that agent i cannot receive any
information from agent j. Let βT

= [β1, . . . , βN ] be a vector with
βi being parameters from Eq. (2). In our simulation experiment
we take βT

= [3.8,−1.5, 2.3,−0.7, 1.5,−3.4]. Initial states of
the model (1) and (2) are selected as xi(0) = 0.5(−2)i+1, and
vi(0) = i(−1)i, i = 1, . . . , 6. In Eq. (18) the algorithm step size
is set to µi = 0.4, i = 1, . . . , 6. Fig. 1 depicts the convergence
of the parameter estimates {θi(t)}, i = 1, . . . , 6. Fig. 2 shows that
all velocities vi(t), i = 1, . . . , 6 converge to the same value. Fig. 3
illustrates that the distance between the first and the fifth agent
converges to a constant.
Fig. 1. Convergence of coupling parameters.

Fig. 2. Convergence of agent velocities vi(t).

Fig. 3. Evolution of distance between the 1st and 5th agent.

6. Conclusion

Inspired by the evolution of flocks, we considered a multi-
agent system where the coupling parameters are locally tuned so
that agent velocities converge toward the same value. The tuning
algorithm is based on a recursive normalized gradient scheme.
Assuming that the graph is strongly connected, it is proved that the
system achieves wide-sense consensus, and the sequence of the
coupling parameters is convergent. Under additional constraints
specified by Assumption A3, it is shown that all agent velocities
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converge toward the same limit, thus achieving strict sense
consensus. As a future research topic it is of interest to examine the
behavior of the described NGA in the case of time-varying graph
topology, presence of noise and delay in transmission channels
between graph nodes, and robustness with respect to modeling
errors of agent dynamics. As pointed out in [34,35] the kick model,
also known as the model of pulse coupled oscillators, is prevalent
in natural manifestations of rhythmic behavior in contrast to
diffusive synchronization. Of particular interest is to investigate
the possible application of the proposed self-tuning algorithm
on the kick problem, as well as the problems of network clock
synchronization [36,37].
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