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There are parametric and non-parametric methods for adaptive Hammerstein system

identification. The most commonly used method is the non-parametric. In reality, the

linear subsystem of a Hammerstein system is not of finite impulse response and non-

parametric adaptive algorithms require large matrices and therefore increase

computational complexity.

The objectives of this paper are to identify the Hammerstein system adaptively

based on the affine projection criterion using a parametric algorithm. We also develop a

bound for control of step size of the proposed algorithm and derive an expression for its

mean square error performance. The error surface of the nonlinear Hammerstein filter

was determined by examining the non-quadratic nature and the global and local

minima of the mean square error cost function. A bound was determined for the

adaptive step size and an expression was derived for the mean square error convergence

based on energy conservation theory. Simulations of system identification applica-

tions showed that convergence speed of the proposed algorithm was faster and the

convergence was superior to previously existing Hammerstein algorithms. Applying the

new algorithm to the identification of the human muscles stretch reflex dynamics

showed good convergence results. The proposed algorithm is of practical value in real

life situations.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear Hammerstein system [1] is a special type of
nonlinear filter in which a static memoryless nonlinear
system is followed by a dynamic linear system as shown in
Fig. 1. The Hammerstein system finds application in the
modeling of signal processing problems such as the distortion
in nonlinearly amplified digital communication signals,
modeling the involuntary contraction of human muscles
[1–3], modeling of the human heart in order to regulate
the heart rate during treadmill exercises [4] and other
applications can be found in [5–7]. Other nonlinear models
ll rights reserved.
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such as Volterra and Wiener models and their applications
can be found in [8,9]. Over the past decade, different methods
of adaptive system identification for Hammerstein nonlinear
model have been proposed. The adaptive Hammerstein
system identification methods can be roughly divided into
two categories: non-parametric [10–12] and parametric
[13,14]. Most existing Hammerstein identification methods
are not adaptive [10,15,16] and almost no results on mean
square performance of adaptive Hammerstein algorithms are
available except for [17].

In the non-parametric method [11], the nonlinear
function f ð�Þ is approximated by a polynomial and shown
to converge in the mean square sense in a finite interval as
the sample size n increases. However, for each n the whole
input sequence has to be redefined with distribution
different from that of n�1, and hence the approximating
polynomial has to be reconstructed at each step without
recursion. In [10], a frequency domain identification
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Fig. 1. Adaptive system identification of a Hammerstein system model.
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was proposed. The author applied a sinusoidal input to a
continuous-time Hammerstein system and the nonlinear
function was expanded to a Fourier series. As a result, the
nonlinearity identification reduced to estimating coeffi-
cients in the Fourier expansion. The estimates are non-
recursive. In the most recent paper, [12] proposes an
adaptive kernel canonical correlation analysis algorithm.
The algorithm is based on a nonlinear transformation of
the data from the input space to a higher-dimensional
space where identification problem can be solved in a
linear manner. However, this approach requires a careful
choice of the constrains imposed on the identification
problem to ensure convergence and is prone to overfitting
especially when the dynamic linear subsystem is an
infinite impulse response filter. In this paper, the system
identification method proposed is parametric [18,14,13]
and therefore has the advantage of lower computational
complexity in comparison to non-parametric methods.

In [13], the memoryless nonlinearity is assumed to be
a polynomial and the linear subsystem an infinite impulse
response (IIR) filter. The authors used a Gram–Schmidt
processor to linearize the polynomial nonlinearity produ-
cing a set of orthogonal linear subsystems (or a set of
finite impulse response (FIR) filters with orthogonal
coefficients). Applying the results in [19], the step size
was constrained in such a way as to guarantee bounded-
input bounded-output (BIBO) stability of the overall
system. In [14], the identification of the linear and
nonlinear subsystems of the Hammerstein model are
done separately. The linear subsystem was identified by
over sampling the output of the Hammerstein model and
applying the least mean square (LMS) algorithm to
minimize their proposed cost function. Two approaches
for the identification of the nonlinear block were
proposed, the direct approach which is based on the
parametric method of adaptive system identification and
the indirect approach that uses the Bezout identity in
developing a cost function which is minimized using the
LMS algorithm. An analysis of the performance of this
algorithm was presented. The authors in [13] extended
their work in [17] to present the mean square perfor-
mance analysis of their proposed algorithm. The analysis
was based on those done in [20,21].
The purpose of this paper is to:
(1)
 Identify the Hammerstein system adaptively based on
the affine projection criterion, without linearizing
of the Hammerstein nonlinearity and without the
knowledge of the input to the linear subsystem.
(2)
 Develop a bound for the control of the step size of the
proposed adaptive Hammerstein algorithm to achieve
bounded-input bounded-output (BIBO) stability.
(3)
 Derive an expression for the mean-square error
performance of the proposed algorithm using energy
conservation arguments.
The assumption is that the unknown nonlinearity of the
plant can be approximated as a finite ordered polynomial.
The linear subsystem is represented as an IIR filter.

The rest of the paper is arranged in sections as follows.
In Section 2, the problem to be addressed by this work is
stated, in Section 3 the proposed algorithm is described.
Section 4 describes the mean square error surface of the
adaptive Hammerstein algorithm and in Section 5 a bound
on the step size for the algorithm was determined. The
mean square performance analysis and real life examples
of the proposed algorithm are presented in Sections 6 and
7, respectively. Concluding remarks are given in Section 8.

2. Problem statement

Consider the Hammerstein model shown in Fig. 1,
where xðnÞ, vðnÞ and dðnÞ are the system’s input, noise and
output, respectively. ẑðnÞ represents the unavailable
internal signal of the adaptive Hammerstein filter model.
Since the output of the memoryless nonlinear subsystem
ẑðnÞ of the Hammerstein filter is unavailable, it is not
possible to estimate the nonlinear subsystem without
assuming an approximate nonlinear model. In this paper,
a polynomial nonlinearity of order L is given by

ẑðnÞ ¼
XL

l ¼ 1

p̂lðnÞx
lðnÞ ð1Þ

While the dynamic linear subsystem is modeled as an
infinite-impulse response (IIR) filter satisfying a linear
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difference equation of the form

d̂ðnÞ ¼�
XN

i ¼ 1

âiðnÞd̂ðn�iÞþ
XM
j ¼ 0

b̂jðnÞẑðn�jÞ ð2Þ

where p̂lðnÞ, âiðnÞ and b̂jðnÞ represent the coefficient
estimates of the nonlinear Hammerstein subsystem at
any given time n. To ensure uniqueness of the parameter-
ization, we normalize the dynamic linear subsystem by
setting b̂0ðnÞ ¼ 1. With the dynamic linear subsystem
normalized, Eq. (2) can be written as

d̂ðnÞ ¼ ẑðnÞ�
XN

i ¼ 1

âiðnÞd̂ðn�iÞþ
XM
j ¼ 1

b̂jðnÞẑðn�jÞ

¼
XL

l ¼ 1

p̂lðnÞx
lðnÞ�

XN

i ¼ 1

âiðnÞd̂ðn�iÞþ
XM
j ¼ 1

b̂jðnÞẑðn�jÞ ð3Þ

Eq. (3) can be rewritten in compact form as

d̂ðnÞ ¼ ŝðnÞHĥðnÞ ð4Þ

where

ĥðnÞ ¼ ½â1ðnÞ . . . âNðnÞ b̂1ðnÞ . . . b̂MðnÞ p̂1ðnÞ . . . p̂LðnÞ�
H

ŝðnÞ ¼ ½�d̂ðn�1Þ . . . �d̂ðn�NÞ ẑðn�1Þ

. . . ẑðn�MÞ xðnÞ . . . xLðnÞ�H

The goal of the proposed adaptive Hammerstein
system identification algorithm, is to update the coeffi-
cient vector ĥðnÞ in (4) of the nonlinear Hammerstein filter
based only on the input signal xðnÞ and output signal dðnÞ

such that d̂ðnÞ is close to the desired response signal dðnÞ.

3. Adaptive Hammerstein algorithm

In this section, an adaptive Hammerstein system
identification algorithm based on the theory of Affine
projection [22] for estimating the parameters of the
nonlinear Hammerstein subsystem represented by (3)
given the input signal xðnÞ and output signal dðnÞ is
derived. A criterion is defined for the minimization of
the square Euclidean norm of the change in the weight
vector is

~hðnÞ ¼ ĥðnÞ�ĥðn�1Þ ð5Þ

subject to the set of Q constraints

dðn�qÞ ¼ ŝðn�qÞHĥðnÞ; q¼ 1; . . . ;Q ð6Þ

Applying the method of Lagrange multipliers with
multiple constraints to (5) and (6), the criterion for the
affine projection filter is written as

Jðn�1Þ ¼ JĥðnÞ�ĥðn�1ÞJ2
þRe½ðdðn�1Þ�Ŝðn�1ÞHĥðnÞÞHk�

ð7Þ

where

dðn�1Þ ¼ ½dðn�1Þ . . . dðn�Q Þ�H

Ŝðn�1Þ ¼ ½ŝðn�1Þ . . . ŝðn�Q Þ�

k¼ ½l1 . . . lQ �
H

Minimizing the cost function (7) with respect to the
nonlinear Hammerstein filter weight vector ĥðnÞ gives

@Jðn�1Þ

@ĥðnÞ
¼ 2ðĥðnÞ�ĥðn�1ÞÞ�

@ðdðn�1Þ�Ŝðn�1ÞHĥðnÞÞHk

@ĥðnÞ

@Jðn�1Þ

@ĥðnÞ
¼ 2ðĥðnÞ�ĥðn�1ÞÞ�

@ðĥðnÞHŜðn�1ÞÞk

@ĥðnÞ
ð8Þ

where

@ðĥðnÞHŜðn�1ÞÞ

@ĥðnÞ
¼

@ĥðnÞH ŝðn�1Þ

@ĥðnÞ
. . .

@ĥðnÞH ŝðn�Q Þ

@ĥðnÞ

" #
ð9Þ

Since a portion of the vectors ŝðnÞ in ŜðnÞ include past
d̂ðnÞ which are dependent on past ŷðnÞ used to form the
new ŷðnÞ, the partial derivative of each element in (8)
gives

@ĥðnÞH ŝðn�qÞ

@âiðnÞ
¼�d̂ðn�q�iÞ�

XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@âiðnÞ
; 1r irN

ð10Þ

@ĥðnÞH ŝðn�qÞ

@b̂jðnÞ
¼ ẑðn�q�jÞ�

XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@b̂jðnÞ
; 1r jrM

ð11Þ

@ĥðnÞH ŝðn�qÞ

@p̂lðnÞ
¼ xlðn�qÞþ

XM
k ¼ 1

b̂kðnÞ
@ẑðn�q�kÞ

@p̂lðnÞ

�
XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@p̂lðnÞ
; 1r lrL ð12Þ

A simplifying assumption commonly made for adap-
tive IIR filtering was applied to (10)–(12). The assumption
is that the adaptation step size m is sufficiently small
[22,23] such that

ĥðnÞffi ĥðn�1Þffi � � � ffi ĥðn�NÞ

and therefore,

âiðnÞffi âiðn�1Þffi � � � ffi âiðn�NÞ

@d̂ðn�qÞ

@âiðnÞ
¼�d̂ðn�q�iÞ�

XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@âiðn�kÞ
ð13Þ

b̂jðnÞffi b̂jðn�1Þffi � � � ffi b̂jðn�NÞ

@d̂ðn�qÞ

@b̂jðnÞ
¼ ẑðn�q�jÞ�

XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@b̂jðn�kÞ
ð14Þ

p̂lðnÞffi p̂lðn�1Þffi � � � ffi p̂lðn�NÞ

@d̂ðn�qÞ

@p̂lðnÞ
¼ xlðn�qÞþ

XM
k ¼ 1

b̂kðnÞ
@ẑðn�q�kÞ

@p̂lðn�kÞ

�
XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@p̂lðn�kÞ
ð15Þ

@p̂lðn�q�kÞ

@p̂lðn�kÞ
¼ 1
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therefore,

@d̂ðn�qÞ

@p̂lðnÞ
¼ xlðn�qÞþ

XM
k ¼ 1

b̂kðnÞx
lðn�q�kÞ�

XN

k ¼ 1

âkðnÞ
@d̂ðn�q�kÞ

@p̂lðn�kÞ

ð16Þ

Let

ûðn�qÞ ¼
@d̂ðn�qÞ

@ĥðnÞ
¼

@d̂ðn�qÞ

@â1ðnÞ
. . .

@d̂ðn�qÞ

@âNðnÞ

@d̂ðn�qÞ

@b̂1ðnÞ
. . .

"

@d̂ðn�qÞ

@b̂MðnÞ

@d̂ðn�qÞ

@p̂1ðnÞ
. . .

@d̂ðn�qÞ

@p̂LðnÞ

#H

F̂ðn�1Þ ¼
@ðĥðnÞHŜðn�1ÞÞ

@ĥðnÞ
¼ ½ûðn�1Þ . . . ûðn�Q Þ�

ŵðn�qÞ ¼ �d̂ðn�q�1Þ . . . �d̂ðn�q�NÞ ẑðn�q�1Þ
h

. . . ẑðn�q�MÞ
XM
j ¼ 0

xðn�q�jÞ . . .
XM
j ¼ 0

xLðn�q�jÞ

3
5H

Ĉðn�1Þ ¼ ½ŵðn�1Þ . . . ŵðn�Q Þ�

Substituting (14)–(16) into (9), gives

F̂ðn�1Þ ¼ Ĉðn�1Þ�
XN

k ¼ 1

âkðn�1ÞF̂ðn�1�kÞ ð17Þ

Thus, rewriting (8)

@Jðn�1Þ

@ĥðnÞ
¼ 2ðĥðnÞ�ĥðn�1ÞÞ�F̂ðn�1Þk ð18Þ

Setting the partial derivative of the cost function in (18) to
zero, gives

~hðnÞ ¼ 1
2F̂ðn�1Þk ð19Þ

From (4), the following is obtained:

dðn�1Þ ¼ Ŝðn�1ÞHĥðnÞ ð20Þ

where

dðn�1Þ ¼ ½dðn�1Þ . . . dðn�Q Þ�H

dðn�1Þ ¼ Ŝðn�1ÞHĥðn�1Þþ Ŝðn�1ÞH ~hðnÞ

¼ Ŝðn�1ÞHĥðn�1Þþ1
2Ŝðn�1ÞHF̂ðn�1Þk ð21Þ

eðn�1Þ ¼ dðn�1Þ�Ŝðn�1ÞHĥðn�1Þ ð22Þ

where

eðn�1Þ ¼ ½eðn�1Þ . . . eðn�Q Þ�H

and

eðnÞ ¼ dðnÞ�ŝðnÞHĥðnÞ

Evaluating (21) and (22) for l results in

k¼ 2ðŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ ð23Þ

Substituting (23) into (19) yields the optimum change in
the weight vector

~hðnÞ ¼ F̂ðn�1ÞðŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ ð24Þ
normalizing (24) as in [20,21] and regularizing
Ŝðn�1ÞHF̂ðn�1Þ matrix to guard against numerical diffi-
culties during inversion yields

~hðnÞ ¼ mF̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ ð25Þ

ĥðnÞ ¼ ĥðn�1Þ�mF̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ

ð26Þ

To improve the update process Newton’s method is
applied by scaling the update vector by R�1ðnÞ. The matrix
RðnÞ is an estimate of the Hessian matrix updated
according to

RðnÞ ¼ lnRðn�1Þþð1�lnÞF̂ðn�1ÞF̂ðn�1ÞH ð27Þ

where ln is the forgetting factor and typically has values
between 0 and 1. Applying the matrix inversion lemma on
(27) gives

RðnÞ�1
¼

1

ln
Rðn�1Þ�1

�Rðn�1Þ�1F̂ðn�1Þ
h
ln

1�ln
I�F̂ðn�1ÞHRðn�1Þ�1F̂ðn�1Þ

� ��1

F̂ðn�1ÞHRðn�1Þ�1
i

ð28Þ

Applying (28) to (26), the new update equation is given by

ĥðnÞ ¼ ĥðn�1Þ�mRðn�1Þ�1F̂ðn�1ÞðdIþmŜðn�1ÞH

F̂ðn�1ÞÞ�1eðn�1Þ ð29Þ

A summary of the proposed algorithm is shown in
Algorithm 1. In the algorithm, N represents the number of
feedback coefficients, M the number of feedforward coeffi-
cients for the linear subsystem and L the number of
coefficients for the polynomial subsystem. Let K represent
NþMþL�2 in the computation of the computational cost
of our proposed adaptive nonlinear algorithm. We assume
that the cost of inverting a K � K matrix is �ðK3Þ

(multiplications and additions) and �ðL2NÞ for computing
R�1. Under these assumptions, the computational cost of
our proposed algorithm is of �ðQK2

Þ multiplications
compared to �ðK2Þ in [13]. This increase in complexity due
to the order of the input regression matrix in the proposed
algorithm is compensated for by the algorithms’ good
performance.
Algorithm 1. Summary of the proposed variable stepsize
Hammerstein adaptive algorithm.

DEFINITION: p̂ðnÞ ¼ ½p̂1ðnÞ . . . p̂LðnÞ�
H

INITIALIZE:

R�1ð0Þ ¼ I; lna0;0omr1; d51; Ŝð0Þ ¼ zerosðMþNþL�1;Q Þ

ĥð0Þ ¼ ½0 . . . 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
â ðnÞ

0 . . . 0|fflfflfflfflffl{zfflfflfflfflffl}
b̂ ðnÞ

1 . . . 1�H|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
p̂ðnÞ

; b̂ð0Þ ¼ 1

for n¼ 0 to sample size do

eðn�1Þ ¼ dðn�1Þ�Ŝðn�1ÞH ĥðn�1Þ

F̂ðn�1Þ ¼ Ĉðn�1Þ�
PN

k ¼ 1

akðn�1ÞF̂ðn�1�kÞ

RðnÞ�1
¼

1

ln
Rðn�1Þ�1

�Rðn�1Þ�1F̂ðn�1Þ
h

ln

1�ln
I�F̂ðn�1ÞHRðn�1Þ�1F̂ðn�1Þ

� ��1

F̂ðn�1ÞHRðn�1Þ�1
i
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ĥðnÞ ¼ ĥðn�1Þ�mRðnÞ�1F̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ

ẑðnÞ ¼ xðnÞH p̂ðnÞ

d̂ðnÞ ¼ ŝðnÞH ĥðnÞ

end for

4. Mean square error surface

In the previous section, the update equation for an
adaptive affine projection Hammerstein nonlinear filter
algorithm was derived. This section provides an insight
into the nature of the error surface of the nonlinear
Hammerstein filter by examining the non-quadratic
nature as well as the global and local minima of E½e2ðnÞ�.
From (2), the transfer function of the linear dynamic
subsystem of the nonlinear Hammerstein filter shown in
Fig. 1 can be rewritten as

ĤðzÞ ¼
B̂ðzÞ

ÂðzÞ
¼

b̂0þ b̂1z�1þ � � � þ b̂Mz�M

â0þ â1z�1þ � � � þ âNz�N
ð30Þ

Let the dynamic linear subsystem transfer function of the
plant in Fig. 1 be represented by

HðzÞ ¼
BðzÞ

AðzÞ
¼

b0þb1z�1þ � � � þbMz�M

a0þa1z�1þ � � � þaNz�N
ð31Þ

and the unknown nonlinear memoryless polynomial
subsystem output as

zðnÞ ¼
XL

l ¼ 1

plðnÞx
lðnÞ ð32Þ

From (22), the mean square error (MSE) is given by

E½e2ðnÞ� ¼ E
BðzÞ

AðzÞ

XL

l ¼ 1

plðnÞx
lðnÞ

 !
�

B̂ðzÞ

ÂðzÞ

XL

l ¼ 1

p̂lðnÞx
lðnÞ

 ! !2
2
4

3
5
ð33Þ

Taking the derivative of (33) with respect to each
coefficient âiðnÞ; b̂jðnÞ and p̂lðnÞ and setting it to zero, the
stationary points of the MSE are

E

"
BðzÞ

AðzÞ

XL

l ¼ 1

plðnÞx
lðnÞ

 !
�

 

B̂ðzÞ

ÂðzÞ

XL

l ¼ 1

p̂lðnÞx
lðnÞ

 !!
B̂ðzÞ

Â
2
ðzÞ

XL

l ¼ 1

p̂lðnÞx
lðn�iÞ

 !#
¼ 0;

1r irN ð34Þ

E
BðzÞ

AðzÞ

XL

l ¼ 1

plðnÞx
lðnÞ

 !
�

B̂ðzÞ

ÂðzÞ

XL

l ¼ 1

p̂lðnÞx
lðnÞ

 ! !"

1

ÂðzÞ

XL

l ¼ 1

p̂lðnÞx
lðn�jÞ

 !#
¼ 0; 1r jrM ð35Þ

E
BðzÞ

AðzÞ

XL

l ¼ 1

plðnÞx
lðnÞ

 !
�

B̂ðzÞ

ÂðzÞ

XL

l ¼ 1

p̂lðnÞx
lðnÞ

 ! !"

1

ÂðzÞ
xlðnÞþ

B̂ðzÞ

ÂðzÞ
xlðnÞ

 !#
¼ 0; 1r lrL ð36Þ

It can be seen that (35) and (36) are linear with respect
to b’s and p’s, respectively, and define a single global
minimum of E½e2ðnÞ�. With respect to a’s, (34) is nonlinear
and therefore produces an error surface that is non-
quadratic. As a result of the nonlinearity in the error
surface, the mean square error surface has both a local
and global minimum. It can be shown from (33), [24,25]
that no local minima exists for the system identification
provided the filter is normalized such that b0 ¼ 1, a0 ¼ 1,
the filter is sufficiently ordered or the order of the
adaptive filter numerator exceeds that of the unknown
filter denominator and the input xðnÞ is a white noise
signal.

5. Step-size

In Section 3, a simplifying assumption was used in the
development of the proposed algorithm. The assumption
made was that the adaptation step size m is chosen to be
sufficiently small such that ĥðnÞffi ĥðn�1Þffi � � � ffi ĥðn�NÞ

is true. In this section, a bound is found on the adaptive
step size m such that assumption of a sufficiently small
stepsize is satisfied while guaranteeing the stability of the
Hammerstein system. For the purpose of this derivation,
the Hammerstein system in (3) can be expressed in its
state-space form as

u1ðnþ1Þ

u2ðnþ1Þ

^

uNðnþ1Þ

wðnÞ

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
uðnþ1Þ

¼

�â1ðnÞ �â2ðnÞ � � � �âNðnÞ 1

1 0 � � � 0 0

^ & & ^ ^

0 � � � 1 0 0

0 � � � 0 1 0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
YðnÞ

u1ðnÞ

u2ðnÞ

^

uNðnÞ

ẑðnÞ

2
6666664

3
7777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
uðnÞ

ð37Þ

d̂ðnÞ ¼ ½b̂0ðnÞ b̂1ðnÞ . . . b̂NðnÞ�

u1ðnþ1Þ

u2ðnþ1Þ

^

uNðnþ1Þ

wðnÞ

2
6666664

3
7777775 ð38Þ

If the assumption ĥðnÞffi ĥðn�1Þffi � � � ffi ĥðn�NÞ holds,
then in particular

JYðnþ1Þ�YðnÞJre ð39Þ

Therefore, for sufficiently small e,

YðnÞffiYðnþ1Þffi � � � ffiYðnþK�1Þ

From (37),

uðnþKÞ ¼ YðnþK�1Þ . . .Yðnþ1ÞYðnÞuðnÞ ð40Þ
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which behaves approximately like the system,

uðnþKÞ ¼ YK ðnÞuðnÞ ð41Þ

given the initialization uðnÞ ¼ uðnÞ. Recall the theorem
proven in [26],

Theorem 1. The linear state equation

uðnþ1Þ ¼ YðnÞuðnÞ; uðn0Þ ¼ u0 ð42Þ

is uniformly exponentially stable if and only if there exists a

positive definite ðNþ1Þ � ðNþ1Þ matrix DðnÞ for which the

residue

YHðnÞDðnÞYðnÞ�DðnÞ ð43Þ

is positive definite.
mr g
JYðnÞrŷðn�1Þ

½uðnþKÞ�uðnþKÞ�ðRðn�1Þ�1F̂ðn�1ÞðŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1ÞÞJDðnÞ

ð53Þ
Since the poles of the (3) are by hypothesis always
inside the unit circle, the unique, symmetric and positive
definite solution of the discrete time Lyapunov equation
can be used as the Lyapunov candidate

YHðnÞDðnÞYðnÞ�DðnÞ ¼�INþ1 ð44Þ

where INþ1 is an Nþ1� Nþ1 identity matrix. Solving
(44) for DðnÞ we have

vec½DðnÞ� ¼ �½YHðnÞ � YHðnÞ�I
ðNþ1Þ2 �

�1vec½INþ1� ð45Þ

where vec½DðnÞ� represents a Kronecker vector formed by
stacking all the columns of DðnÞ and � denotes the
Kronecker product [27]

uH
ðnÞððYK Þ

H
ðnÞDðnÞðYK ÞðnÞ�DðnÞÞuðnÞ ¼ �uH

ðnÞINþ1uðnÞ

ð46Þ

which can be rewritten as

JuðnþKÞJ2
DðnÞ�JuðnÞJ2

DðnÞ ¼ �JuðnÞJ2
INþ 1

Z$JuðnÞJ2
DðnÞ ð47Þ

for some positive constant $. Thus,

JuðnþKÞJ2
DðnÞZð1�$ÞJuðnÞJ2

DðnÞ ð48Þ

illustrating a strict decrease in the state vector norm.
From (44),

JuðnþKÞ�uðnþKÞJ2
DðnÞrg ð49Þ

where g is a sufficiently small constant as a result of e
being sufficiently small. Thus for a sufficiently small e, the
vector uðnþKÞ will lie within a g- ball of uðnþKÞ and
provided the radius g is less than the worst-case delay
$JuðnÞJ2

DðnÞ, the inequality [23]

JuðnþKÞJ2
DðnÞrJuðnÞJ2

DðnÞ ð50Þ

should carry through.
In order to ensure the stability of the proposed

adaptive nonlinear Hammerstein algorithm, an upper
bound on the adaptation step-size m is determined such
that (50) is satisfied. From (49)

uðnþKÞ�uðnþKÞCrŷðnÞ½uðnþKÞ�uðnþKÞ�DŷðnÞ

CYðnÞrŷðn�1Þ
½uðnþKÞ�uðnþKÞ�Dŷ ð51Þ

where rŷðn�1Þ
is the gradient operator with respect to the

coefficient ŷðnÞ and DŷðnÞ ¼ ŷðnþ1Þ�ŷðnÞ. From the
update equation

ĥðnÞ�ĥðn�1Þ ¼mRðn�1Þ�1F̂ðn�1ÞðŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ

ð52Þ

From (49) and (51) an explicit condition for the step size
mðnÞ for the stability of the proposed adaptive Hammer-
stein algorithm was obtained as
6. Mean square performance

This section, presents an expression for the steady state
mean square error based on energy conservation theory
[28]. The expression derived is based on the assumption
that with slow convergence and a stationary operating
environment, the ensemble average of the excess squared
error is close to its minimum possible value [22].

Introducing the a priori error vector eaðn�1Þ

eaðn�1Þ ¼ Ŝðn�1ÞHĥðn�1Þ ð54Þ

Substituting hðnÞ ¼ h�ĥðnÞ in (29), the equation is rewrit-
ten (29) as

hðnÞ ¼ hðn�1Þ�mRðn�1Þ�1F̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ

ð55Þ

Multiplying both sides with R1=2ðn�1Þ from the left and
computing the square norm result in

h
H
ðnÞRðn�1ÞhðnÞ ¼ JR1=2ðn�1Þhðn�1Þ

�mRðn�1Þ�1=2F̂ðn�1ÞðdIþmŜðn�1ÞH

F̂ðn�1ÞÞ�1eðn�1ÞJ ð56Þ

Expanding and applying the ensemble average gives

E½h
H
ðnÞRðn�1ÞhðnÞ�

¼ E½h
H
ðn�1ÞRðn�1Þhðn�1Þ�

�mE½h
H
ðn�1ÞF̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1eðn�1Þ�

�mE½eHðn�1ÞðdIþmF̂ðn�1ÞHŜðn�1ÞÞ�1F̂
H
ðn�1Þh�

þE½JmRðn�1Þ�1=2F̂ðn�1ÞðdIþmŜðn�1ÞH

F̂ðn�1ÞÞ�1eðn�1ÞJ� ð57Þ

As n-1, the algorithm approaches its steady state

condition and E½h
H
ðnÞRðn�1ÞhðnÞ� ¼ E½h

H
ðn�1ÞRðn�1Þ

hðn�1Þ�. Also, it is known that

eðn�1Þ ¼ eaðn�1Þþvðn�1Þ ð58Þ
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The following assumptions of independence are made:
(1)
 the noise vðn�1Þ is independently and identically
distributed and statistically independent of the
regression matrices Ŝðn�1Þ and F̂ðn�1Þ.
(2)
 At steady-state, Ŝðn�1Þ is statistically independent of
eaðn�1Þ with E½eH

a ðn�1Þeaðn�1Þ� ¼ Ejeaðn�1Þj2 and
E½eH

a ðn�1Þ� ¼ 0.
In the Appendix, expressions for the filters mean square
error (MSE) and excess mean square error (EMSE) were
derived as

EMSE¼
�ms2

vTrðE½Cðn�1Þ�Þ

ðTrðmE½Cðn�1Þ�Þ�2zðnÞTrðE½Gðn�1Þ�ÞÞ
ð59Þ

and

MSE¼
�ms2

vTrðE½Cðn�1Þ�Þ

ðTrðmE½Cðn�1Þ�Þ�2zðnÞTrðE½Gðn�1Þ�ÞÞ
þs2

v ð60Þ

where

zðnÞ ¼ m�
Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞ

Cðn�1Þ ¼ ðdIþmF̂
H
ðn�1ÞŜðn�1ÞÞ�1F̂

H
ðn�1ÞR�1

ðn�1ÞF̂ðn�1ÞðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1

Gðn�1Þ ¼ ðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1

7. Results

In this section the validity of the proposed algorithm is
demonstrated. Simulation results corresponding to white
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Fig. 2. Mean square deviation (MSD) learning curve of pr
and colored types of signals are shown. Results are also
presented for a real life Hammerstein system involving
the identification of the human muscle stretch reflex
dynamics.

The Hammerstein nonlinear subsystem to be identified
has a linear subsystem of infinite impulse response
given by

H1ðzÞ ¼
1:0000�1:8000z�1þ1:6200z�2�1:4580z�3þ0:6561z�4

1:0000�0:2314z�1þ0:4318z�2�0:3404z�3þ0:5184z�4

ð61Þ

and a nonlinear subsystem of polynomial nonlinearity
given by

zðnÞ ¼ xðnÞ�0:3xðnÞ2þ0:2xðnÞ3 ð62Þ

Since it is known that bð0Þ ¼ 1, the update weight vector
for all simulations were initialized to

ĥð0Þ ¼ ½0 . . . 0 0 . . . 0 1 . . . 1�H

Results shown were obtained by ensemble averaging over
100 independent trials of the experiment.

7.1. System identification with white input

System identification simulations were performed to
identify the nonlinear Hammerstein type plant with
impulse response given in (61) and (62). The desired
response signal dðnÞ of the adaptive Hammerstein filter
was obtained by corrupting the output of the unknown
system with additive white noise signals of zero mean
and variance such that the output signal to noise ratio
was 30 dB. The input signal xðnÞ of the adaptive filter
was an additive white noise signal with zero mean and
unit variance. The adaptive Hammerstein filter was
6000 8000 10000
 iteations (n)

Q = 1
Q = 2
Q = 3
Q = 4

oposed algorithm for white input and Q ¼ 1;2;3;4.
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simulated with a fixed step size initialized based on (53)
to 1:674e�7. Other parameter settings were as follows ln

the forgetting factor was set to 0.995, d for the
regularization matrix was set to 1e�4 and g¼ 1e�3 based
on the noise variance.

Fig. 2 shows the learning curve describing the mean
square deviation of the adaptive Hammerstein filter
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Fig. 3. Mean square error learning curve of proposed algorithm

0 2000 4000
10−8

10−6

10−4

10−2

100

102

Number of 

M
ea

n 
S

qu
ar

e 
D

ev
ia

tio
n

Fig. 4. Mean square deviation (MSD) learning curve of proposed algorithm
weights from the optimum weight of the Hammerstein
model plant. From this figure, it can be seen that the
convergence speed of the proposed algorithm in this
paper increased with an increase in the number of
constraints Q. Fig. 3 shows that the mean square error
learning curve for the case where the number of
constraints Q was set to 3 compared very well with the
6000 8000 10000
Iterations (n)

MSE for Q = 3
Theoretical MSE

for white noise input, Q ¼ 3 and theoretical MSE line.

6000 8000 10000
iterations (n)

Q = 1
Q = 2
Q = 3
Q = 4
Reference [13]

for colored input and Q ¼ 1;2;3;4 compared with results from [13].
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steady state expression in (60). This behavior is expected
since (60) was based on the assumption of independence.

7.2. System identification with colored input

For a colored input signal xðnÞ the adaptive filter was
generated by filtering an additive white noise signal with
zero mean and unit variance with the filter

H2ðzÞ ¼ 1þ0:5z�1 ð63Þ

All the parameter settings for the proposed algorithm and
[13] were kept the same as described in Section 7.1. In the
case of [13], d0 was set 10�5 and the initial value of ŝ2

vj
ðnÞ

was set to 10. The results obtained using the reasonably
colored signal as input are shown in Fig. 4. The proposed
algorithm converged much faster than the algorithm
proposed in [13] even though the authors had used the
Gram–Schmidt process to better enhance the algorithms’
performance in a colored input environment. Also, when
the number of constraints was set above 1, the mean
square convergence in the weight was independent of the
number of constraints Q.

7.3. A practical example

It is interesting to apply the affine projection adaptive
Hammerstein filter developed in this paper to a practical
example which is the identification of the human muscles
stretch reflex dynamics. The stretch reflex is the involuntary
contraction of a muscle which results from perturbation of
its lengths. In this subsection, real life data obtained from [1]
was used. A description of how the input and output data
was collected for system identification problem is given in
[1]. In this experiment, the linear subsystem of the
Hammerstein filter was chosen as an eighth order IIR filter
and the nonlinearity was selected to be of the fifth order.
The Hammerstein adaptive filter parameters were set as
follows: ln ¼ 0:99, d¼ 1e�3, g¼ 1e�3 and m¼ 1:674e�6.
The step-size m was carefully chosen to satisfy the condition
in (53) for stability. The mean square error learning curve
for this experiment is shown in Fig. 5. This figure shows the
convergence of the algorithm in the mean square error
sense. The result also shows sensitivity of the proposed
algorithm to variation in the weight parameter. This is due
to the use of a polynomial nonlinearity to approximate the
half-wave rectifier type nonlinearity of the stretch reflex
dynamic shown in [1].
8. Conclusion

In this paper, an adaptive affine projection nonlinear
Hammerstein algorithm for the identification of Hammer-
stein type nonlinear subsystems is proposed. The Ham-
merstein model considered was a cascade of a polynomial
nonlinearity and an infinite impulse response filter. Due
to the presence of an IIR filter, a recursive bound on the
adaptation step-size was derived to achieve bounded-
input bounded-output stability of the adaptive Hammer-
stein algorithm. Also, a theoretical expression for the
convergence behavior of the mean square error was
derived based on energy conservation theory. Results
for colored inputs showed the superior convergence of
the proposed algorithm when compared to an existing
adaptive Hammerstein algorithm. We demonstrated good
convergence by the proposed algorithm when used under
real life, colored and white input data environments.
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Appendix A

In this appendix, (59) and (60) are derived. From Eq. (57)

E½m2eH
a ðn�1ÞCðn�1Þeaðn�1Þ�þE½m2jvðn�1Þj�E½Cðn�1Þ�

¼ 2mE½y
H
ðn�1ÞF̂ðn�1ÞGðn�1Þeaðn�1Þ� ð64Þ

where

Cðn�1Þ ¼ ðdIþmF̂
H
ðn�1ÞŜðn�1ÞÞ�1F̂

H
ðn�1ÞR�1ðn�1ÞF̂ðn�1Þ

ðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1

Gðn�1Þ ¼ ðdIþmŜðn�1ÞHF̂ðn�1ÞÞ�1

It is clear that Eq. (17) can also be written as

F̂ðn�1Þ ¼ Ŝðn�1ÞþD̂ðn�1Þ�
XN

k ¼ 1

akðn�1ÞF̂ðn�1�kÞ ð65Þ

where

k̂ðn�qÞ ¼ 0 . . . 0 0 . . . 0
XM
j ¼ 1

xðn�q�jÞ . . .
XM
j ¼ 1

xLðn�q�jÞ

2
4

3
5H

D̂ðn�1Þ ¼ ½k̂ðn�1Þ . . . k̂ðn�Q Þ�

Thus

m2ðE½eH
a ðn�1ÞCðn�1Þeaðn�1Þ�þE½jvðn�1Þj�E½Cðn�1Þ�Þ

¼ 2mE eH
a ðn�1ÞGðn�1Þeaðn�1Þþy

H
ðn�1Þ

h

D̂ðn�1Þ�
XN

k ¼ 1

akðn�1ÞF̂ðn�1�kÞ

 !
Gðn�1Þeaðn�1Þ

#

ð66Þ

Expanding the expression for F̂ðn�1Þ taking into
account the effects of the inputs within the time interval
0 to n�1, we have

F̂ðn�1Þ ¼ Ŝðn�1ÞþD̂ðn�1Þþ
Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

�
XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞŜðn�f�1Þ
EMSE¼
�msv TrðE½Cðn�1Þ�Þ

mTrðE½Cðn�1Þ�Þ�2ðmþ
Pn�2

f ¼ 1ð�1Þf
Qf�1

g ¼ 0

PN
kn�f þ g ¼ 1 akn�f þ g

ðn�f þgÞTrðE½Gðn�1Þ�Þ
ð74Þ
þ
Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞD̂ðn�f�1Þ

ð67Þ

From Section 4, the requirement on Ŝðn�1Þ is that it be
sufficiently exciting in the sense that Ŝðn�1ÞHyðn�1Þ ¼ 0
only if y ¼ 0. Thus at steady state

Ŝðn�1ÞHyðn�1Þ ¼ Ŝðn�2ÞHhðn�1Þ ¼ Ŝðn�3ÞHyðn�1Þ ¼ � � � ¼ eaðn�1Þ

ð68Þ
Substituting Eqs. (67) and (66) into (65) and simplify-
ing give

m2ðE½eH
a ðn�1ÞCðn�1Þeaðn�1Þ�þE½jvðn�1Þj�E½Cðn�1Þ�Þ

¼ 2mE½eH
a ðn�1ÞGðn�1Þeaðn�1Þ�

þ2mE½h
H
ðn�1ÞD̂ðn�1ÞGðn�1Þeaðn�1Þ�

þ2mE

2
4Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g

ðn�f þgÞeH
a ðn�1ÞGðn�1Þeaðn�1Þ

3
5

þ2mE

2
4yH
ðn�1Þ

Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞ

D̂ðn�f�1ÞGðn�1Þeaðn�1Þ

3
5 ð69Þ

using the second assumption made in Section 5, Eq. (69) is
reduced to

m2Ejeaðn�1ÞjTrðE½Cðn�1Þ�Þ�2mEjeaðn�1ÞjTrðE½Gðn�1Þ�Þ

�2m
Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞ

Ejeaðn�1ÞjTrðE½Gðn�1Þ�Þ ¼ �m2E½jvðn�1Þj�TrðE½Cðn�1Þ�Þ

ð70Þ

Ejeaðn�1Þj
�
m2 TrðE½Cðn�1Þ�Þ�2mTrðE½Gðn�1Þ�Þ

�2m
Xn�2

f ¼ 1

ð�1Þf
Yf�1

g ¼ 0

XN

kn�f þ g ¼ 1

akn�f þ g
ðn�f þgÞTrðE½Gðn�1Þ�Þ

�

¼�m2E½jvðn�1Þj�TrðE½Cðn�1Þ�Þ ð71Þ

Eq. (71) can be used to develop an expression for the
filter mean square error (MSE) or equivalent, for the filter
excess mean square error (EMSE), which is defined by

EMSE¼ lim
n-1
jeaðnÞj ð72Þ

From Eqs. (58) and (72), the MSE can be written as

MSE¼ EMSEþs2
v ð73Þ

where s2
v ¼ E½jvðn�1Þj�. From Eq. (71), the MSE of the filter

is given in Eq. (60)
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