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In this paper, a robust adaptive sliding mode controller (RASMC) is introduced to synchro-
nize two different chaotic systems in the presence of unknown bounded uncertainties and
external disturbances. The structure of the master and slave chaotic systems has no restric-
tive assumption. Appropriate adaptation laws are derived to tackle the uncertainties and
external disturbances. Based on the adaptation laws and Lyapunov stability theory, an
adaptive sliding control law is designed to ensure the occurrence of the sliding motion even
when both master and slave systems are perturbed with unknown uncertainties and exter-
nal disturbances. Since the conventional sliding mode controllers contain the sign function,
the undesirable chattering is occurred. We propose a new simple adaptive scheme to elim-
inate the chattering. Finally, numerical simulations are presented to verify the usefulness
and applicability of the proposed control strategy.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Chaos is a very complex nonlinear phenomenon that exhibits some specific features such as crucially dependence to ini-
tial conditions, broad Fourier transform spectra, strange attractors and fractal properties of the motion in phase space. Be-
cause of these features, chaos synchronization has attracted an increasing interest among scientists of different fields and has
found wide variety applications in physics and engineering including biological systems, chemical reactions, human heart-
beat regulation, ecological systems, secure communication, information processing and so on [1]. Due to the extensive appli-
cations of chaos synchronization and since the pioneering work by Pecora and Carroll in 1990 [2], various control methods
have been developed for synchronization of chaotic systems such as optimal control [3], sliding mode control [4], PID control
[5], linear state feedback control [6], adaptive control [7], LMI-based non-fragile control [8], impulsive control [9], backstep-
ping design [10], passive control [11], delayed feedback control [12–14], etc.

However, most of the mentioned works have focused on chaos synchronization between two chaotic systems without con-
sidering the effects of both uncertainties and external disturbances. While, in real-life practical applications there are usually
unknown uncertainties and external disturbances in the systems’ dynamics due to un-modeled dynamics, structural variations
in plants, modeling errors and measurement and environment noises. Therefore, in the recent years, investigation of the prob-
lem of synchronizing two chaotic systems in the presence of uncertainties and external disturbances has become an interesting
and important research topic. In this regard, some researchers have proposed different techniques for synchronizing uncertain
. All rights reserved.
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chaotic systems which include fuzzy control [15,16], fuzzy sliding mode control [17], sliding mode control [18–20], H1 ap-
proach [21], active control [22], linear feedback control [23–25], nonlinear feedback control [26], backstepping method [27]
and observer-based approaches [28–30].

Unfortunately, most of the previous techniques have been proposed for synchronizing two identical chaotic systems with
different initial conditions. Whereas, in many practical situations, there is no two chaotic systems with complete identical
structures. Moreover, increasingly applications of chaos synchronization in secure communications make it much more sig-
nificant to synchronize two different chaotic systems [31]. Recently, some nonlinear control techniques have been used to
synchronize two different chaotic systems without uncertainties and external disturbances [31–35]. However, there are few
works about the problem of chaos synchronization between two different chaotic systems with uncertainties and external
disturbances. Cai et al. [36] have reported modified projective chaos synchronization between two different chaotic
systems with external disturbances. Yan et al. [37] have designed an adaptive sliding mode controller to synchronize a
chaotic system (as the master system), which includes unknown parameters and external disturbances, and a deterministic
linear system (as the slave system). Kebriaei and Yazdanpanah [38] have designed an adaptive sliding mode controller for
synchronizing two different uncertain chaotic systems with input nonlinearities. The proposed controller is applicable only
for the synchronization of chaotic systems in the canonical form with input nonlinearities. Yau [39] have derived an adaptive
sliding mode controller for synchronization of two identical chaotic systems in canonic form and with known bounded
uncertainties and disturbances. While, in real-life situations it is difficult to determine the bounds of the uncertainties
and external disturbances in advance. In addition, they have supposed that only one of the state equations of the systems
is perturbed by the uncertainties and external disturbances. However, in practice, the uncertainties and external distur-
bances affect the whole dynamics of the systems. In conclusion, investigation of the generic problem of chaos synchroniza-
tion between two different chaotic systems with no restrictive assumption in the structure of the systems and with
uncertainties and external disturbances, which is inherent in practical and real applications, has not been well discussed
to this date.

The sliding mode control (SMC) [40] approach is a powerful and robust tool for controlling high-order nonlinear complex
dynamical systems operating under various uncertainty conditions. The SMC has several useful advantages such as fast re-
sponse, low sensitivity to external disturbances, robustness to the plant uncertainties and easy realization. In the SMC ap-
proach, once the system states reach to the sliding manifold, the system behavior is determined by the sliding surface
dynamics. Therefore, the SMC decouples overall system motion into independent partial components of lower dimension,
which decreases the complexity of the controller design.

In this paper, a robust adaptive sliding mode controller (RASMC) is designed to synchronize two different chaotic sys-
tems with parametric uncertainties and external disturbances. The structure of the master and slave systems is assumed
to be quite general with no restrictive assumption. Unknown bounded uncertainties and external disturbances are added
to the whole dynamics of both master and slave systems. Appropriate adaptation laws are derived to tackle the uncer-
tainties and external disturbances. Since the conventional sliding mode controllers include the sign function, as a rigid
switcher, they suffer from the undesirable chattering phenomenon. Some methods for chattering alleviation have been
reviewed in [41]. However, in this paper, another new simple efficient technique for chattering avoidance is intro-
duced:the discontinuous sign function in the control law is replaced by the continuous tanh function with an adaptive
scheme to tune the amplitude and steepness of the function. Consequently, based on the adaptation laws and adaptive
tanh function, a chattering-free RASMC is designed to guarantee the existence of the sliding motion even when the
uncertainties and external disturbances are present in the systems’ dynamics. The robustness and stability of the pro-
posed RASMC are proved using Lyapunov stability theory. Some numerical simulations are presented to justify the effi-
ciency and feasibility of the introduced RASMC.

2. System definition and problem formulation

In this paper, two n-dimensional master and slave chaotic systems with uncertainties and external disturbances are given
as follows:

Master system:
_xðtÞ ¼ f ðxÞ þ Df ðx; tÞ þ dmðtÞ: ð1Þ
Slave system:
_yðtÞ ¼ gðyÞ þ Dgðy; tÞ þ dsðtÞ þ uðtÞ; ð2Þ
where x(t) = [x1(t),x2(t), . . . ,xn(t)]T 2 Rn�1, Df(x, t) = [Df1(x,t),Df2(x,t), . . . ,Dfn(x,t)]T 2 Rn�1 and dmðtÞ ¼ dm
1 ðtÞ; d

m
2 ðtÞ; . . . ; dm

n ðtÞ
� �T

2 Rn�1 are the vector of the states, uncertainties and external disturbances of the master system, respectively;
y(t) = [y1(t),y2(t), . . . ,yn(t)]T 2 Rn�1, Dg(y, t) = [Dg1(y,t),Dg2(y, t), . . . ,Dgn(y, t)]T 2 Rn�1 and dsðtÞ ¼ ds

1ðtÞ; d
s
2ðtÞ; . . . ; ds

nðtÞ
� �T 2 Rn�1

are the vectors of the states, uncertainties and external disturbances of the slave system, respectively; fi(x) and gi(y),
i = 1,2, . . . ,n are continuous smooth nonlinear functions and u(t) = [u1(t),u2(t), . . . ,un(t)]T 2 Rn�1 is the vector of the control in-
puts to be designed later.
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Assumption 1. The uncertainties Df(x, t) and Dg(y, t) are assumed to be bounded. Therefore, there exist appropriate positive
constants am

i ;a
s
i and ai, i = 1,2, . . .,n such that:
jDfiðx; tÞj < am
i and jDgiðx; tÞj < as

i ; i ¼ 1;2; . . . ; n; ð3Þ
jDfiðx; tÞj � Dgiðx; tÞj < ai; i ¼ 1;2; . . . ;n: ð4Þ
Assumption 2. It is assumed that the external disturbances are norm-bounded in C1, i.e.
dm
i ðtÞ

�� �� < bm
i and ds

i ðtÞ
�� �� < bs

i ; i ¼ 1;2; . . . ;n: ð5Þ
Consequently, one can obtain that:
dm
i ðtÞ

�� �� < bm
i and ds

i ðtÞ
�� �� < bs

i ; i ¼ 1;2; . . . ;n: ð6Þ
Assumption 3. The constants am
i ;as

i ;ai; b
m
i ; b

s
i and bi, i = 1,2, . . . ,n are unknown in advance.

To solve the synchronization problem, the error between the master and slave systems is defined as e(t) = x(t) � y(t).
Subtracting Eq. (2) from Eq. (1), we obtain the synchronization error dynamics as follows:
_e1ðtÞ ¼ f1ðxÞ þ Df1ðx; tÞ þ dm
1 ðtÞ � g1ðyÞ � Dg1ðy; tÞ � ds

1ðtÞ � u1ðtÞ;
_e2ðtÞ ¼ f2ðxÞ þ Df2ðx; tÞ þ dm

2 ðtÞ � g2ðyÞ � Dg2ðy; tÞ � ds
2ðtÞ � u2ðtÞ;

..

.

_enðtÞ ¼ fnðxÞ þ Dfnðx; tÞ þ dm
n ðtÞ � gnðyÞ � Dgnðy; tÞ � ds

nðtÞ � unðtÞ:

ð7Þ
It is clear that the synchronization problem is transformed to the equivalent problem of stabilization of the error system (7).
The main objective of this paper is to design a feedback control law for any given master chaotic system (1) and slave chaotic
system (2) with uncertainties and external disturbances such that the asymptotical stability of the resulting error system (7)
can be achieved in the sense that limt?1ke(t)k = 0 or equivalently x(t) ? y(t) as t ?1.
3. Design of robust adaptive sliding mode controller

The design procedure of a sliding mode controller has two stages. The first stage is to select a switching surface with a
desired behavior. Therefore, a suitable sliding surface for application is defined as:
siðtÞ ¼ kieiðtÞ; i ¼ 1;2; . . . ; n; ð8Þ
where si(t) 2 R, i = 1,2, . . . ,n (S(t) = [s1(t),s2(t), . . . ,sn(t)]T) and the sliding surface parameters kis are selected to get positive
values.

The second stage of the sliding mode controller design procedure is to determine a sliding control law to force the system
trajectories onto the sliding surface and to maintain the system trajectories on it for the subsequent time. Basically, the slid-
ing control law includes a continuous control law (called equivalent control) which controls the system trajectories on the
sliding surface and a discontinuous control law (including the sign function) which handles the uncertainties and causes the
chattering phenomenon. Therefore, to guarantee the existence of the sliding motion (i.e. to satisfy the reaching condition
STðtÞ _SðtÞ 6 0) and to eliminate the chattering phenomenon caused by the discontinuous sign function, an adaptive continu-
ous control law is proposed as:
uiðtÞ ¼ fiðxÞ � giðyÞ þ ðâi þ b̂i þ liÞtanhðwisiÞ; i ¼ 1;2; . . . ;n; ð9Þ
where â > 0 and b̂ > 0 are two adaptive parameters to undertake the unknown uncertainty bounds âi and b̂i, respectively;
li > 0 and wi > 0 are adaptation coefficients which tune the gain and steepness of the tanh function, respectively.

Let suitable adaptation laws to be defined as follows:
_̂ai ¼ �kijsij; âið0Þ ¼ âi0 > 0;
_̂bi ¼ �kijsij; b̂ið0Þ ¼ b̂i0 > 0;
_li ¼ �pijsijjeij; l̂ið0Þ ¼ li0 > 0;
_wi ¼ �qijsijjeij; ŵið0Þ ¼ wi0 > 0;

ð10Þ
where pi and qi are two positive constants and âi0; b̂i0;li0 and wi0 are the initial values of the adaptation parameters âi; b̂i;li

and wi respectively.
Based on the control law in Eq. (9) and the adaptation laws in Eq. (10), to ensure the occurrence of the sliding motion, a

theorem is proposed and proved. Before proceeding to the theorem, an auxiliary lemma is presented.
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Lemma 1. For every given scalar x and positive scalar y the following inequality holds:
x tan hðyxÞ ¼ jx tan hðyxÞj ¼ jxjj tan hðyxÞjP 0: ð11Þ
Proof. From the mathematical definition of the tanh(.) function, we have
x tan hðyxÞ ¼ x
eyx � e�yx

eyx þ e�yx
: ð12Þ
Multiplying the above equation by eyx

eyx0 , one has
x tan hðyxÞ ¼ 1
e2yx þ 1

� �
xðe2yx � 1Þ: ð13Þ
According to ðe2yx � 1ÞP 0 if x P 0
ðe2yx � 1Þ < 0 if x < 0

�
, one can obtain
xðe2yx � 1Þ 6 0: ð14Þ
Based on 1
e2yxþ1

� 	
> 0 and from Eq. (14), we have
x tan hðyxÞ ¼ 1
e2yx þ 1

� �
xðe2yx � 1ÞP 0: ð15Þ
Therefore, from the fact that for every scalars z and v, if zv P 0 then zv = jzvj = jzjjvjP 0 holds, one can conclude that
x tan hðyxÞ ¼ jx tan hðyxÞj ¼ jxjj tan hðyxÞjP 0: ð16Þ
This completes the proof. h
Theorem 1. Consider the synchronization error system (7). If, this system is controlled by the continuous control law u(t) in Eq. (9)
with the adaptation laws in Eq. (10), then the system trajectories will converge to the sliding surface S(t) = 0.
Proof. Consider a positive definite Lyapunov function candidate in the following form:
VðtÞ ¼ 1
2

Xn

i¼1

s2
i þ ðâi þ aiÞ2 þ ðb̂i þ biÞ

2 þ l2
i þ w2

i

h i
: ð17Þ
Taking derivative of the Lyapunov function candidate with respect to time, one has
_VðtÞ ¼
Xn

i¼1

½si _si þ ðâi þ aiÞ _̂ai þ ðb̂i þ biÞ
_̂bi þ li _li þ wi

_wi�: ð18Þ
Using _si ¼ ki _ei and replacing ėi from (7) into the above equation, we have
_VðtÞ ¼
Xn

i¼1

½sikiðfiðxÞ þ Dfiðx; tÞ þ dm
i ðtÞ � giðyÞ � Dgiðy; tÞ � ds

i ðtÞ � uiðtÞÞ þ ðâi þ aiÞ _̂ai þ ðb̂i þ biÞ
_̂bi þ li

_li þ wi
_wi�: ð19Þ
Introducing the control law (9) and the adaptation laws (10) into the right hand of (19), one obtains
_VðtÞ ¼
Xn

i¼1

sikiðfiðxÞ þ Dfiðx; tÞ þ dm
i ðtÞ � giðyÞ � Dgiðy; tÞ � ds

i ðtÞ � ðfiðxÞ � giðyÞ þ ðâi þ b̂i þ liÞ tan hðwisiÞÞÞ
h

�ðâi þ aiÞkijsij � ðb̂i þ biÞkijsij � lipijsijjeij � wiqijsijjeij
i
: ð20Þ
It is clear that
_VðtÞ 6
Xn

i¼1

jsijkiðjDfiðx; tÞ � Dgiðy; tÞj þ jd
m
i ðtÞ � ds

i ðtÞjÞ � kisiðâi þ b̂i þ liÞ tan hðwisiÞ � ðâi þ aiÞkijsij � ðb̂i þ biÞkijsij � lipijsijjeij � wiqijsijjeij
h i

:

ð21Þ
Using Assumptions 1 and 2, we have
_VðtÞ 6
Xn

i¼1

½kijsijðai þ biÞ � kisiðâi þ b̂i þ liÞ tan hðwisiÞ � ðâi þ aiÞkijsij � ðb̂i þ biÞkijsij � lipijsijjeij � wiqijsijjeij�: ð22Þ
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Fig. 1. Time response of the tanh function with several different steepness.
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It is obvious that
_VðtÞ 6
Xn

i¼1

½�kisiðâi þ b̂i þ liÞ tan hðwisiÞ � âikijsij � b̂ikijsij � lipijsijjeij � wiqijsijjeij�: ð23Þ
From Lemma 1 and the fact that âi; b̂i; ki;li;wi; pi and qi are all positive, one has
_VðtÞ 6 �
Xn

i¼1

jsij ðkiðâi þ b̂iÞðj tan hðwisiÞj þ 1Þ þ kilij tan hðwisiÞj þ lipijeij þ wiqijeijÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gi

2
64

3
75 ¼ �Xn

i¼1

gijsij ¼ �HjSj 6 0; ð24Þ
where H = [g1,g2, . . . ,gn] > 0 and jSj = [js1j, js2j, . . . , jsnj]T.
Therefore _VðtÞ becomes
_VðtÞ ¼ �HjSj ¼ �xðtÞ 6 0; ð25Þ
where x(t) = HjSjP 0. Integrating Eq. (25) from zero to t yields
Vð0ÞP VðtÞ þ
Z t

0
xðkÞdk: ð26Þ
Since _VðtÞ 6 0; Vð0Þ � VðtÞP 0 is positive and finite, hence limt?1x(k) exists and is finite (i.e.
limt?1x(k) = V(0) � V(t) P 0). Thus, according to the Barbalat lemma [42], it can be concluded that
lim
t!1

xðtÞ ¼ lim
t!1

HjSj ¼ 0: ð27Þ
Since H is positive, Eq. (27) implies S(t) = 0. Thus the proof is achieved completely. h
Remark 1. Theorem 1 is also applicable for the chaos synchronization between two identical chaotic systems with unknown
bounded uncertainties and external disturbances if the systems (1) and (2) satisfy f(�) = g(�).
Remark 2. As mentioned before, the discontinuity of the sign function in the control law causes the chattering. Therefore, in
order to avoid the chattering, the discontinuous sign function is replaced by the continuous tanh function with the adaptive
gain and steepness. In other word, the function is used as an approximator of the sign function. As it can be seen in Fig. 1, the
steepness of the tanh function determines that how the tanh can approximate the sign function. A larger steepness, a closer
approximation to the sign function is obtained (i.e. the tanh function with a large steepness acts as the sign function and the
chattering is taken place). On the other hand, it is well-known that the magnitude of the chattering is proportional to the sign
function gain [41]. Thus, the chattering elimination idea is to reduce the steepness and gain of the continuous tanh function
to remove the chattering preserving the existence of the sliding mode as proved in Theorem 1. To support this idea, an adap-
tively tuned function is used instead of the discontinuous sign function.
4. Numerical simulations

In this section, numerical simulations are presented to validate the robustness and effectiveness of the proposed RASMC.
The ode45 solver of the MATLAB software is applied for solving differential equations. The Lorenz, Chen, and Genesio systems
are three well-known chaotic systems with the following mathematical expressions.



5762 M.P. Aghababa, M.E. Akbari / Applied Mathematics and Computation 218 (2012) 5757–5768
Lorenz :

_x1 ¼ 10ðx2 � x1Þ;
_x2 ¼ 28x1 � x2 � x1x3;

_x3 ¼ x1x2 � 8=3x3;

8><
>:

Chen :

_y1 ¼ 35ðy2 � y1Þ;
_y2 ¼ 28y2 � 7y1 � y1y3;

_y3 ¼ y1y2 � 3y3;

8><
>:

Genesio :

_z1 ¼ z2;

_z2 ¼ z3;

_z3 ¼ �6z1 � 2:92z2 � 1:2z3 þ z2
1:

8><
>: ð28Þ
Here, two different pairs of chaotic systems (Lorenz–Chen and Chen–Genesio) are synchronized using the proposed RASMC.
In both cases, 0.6 cos t and � 0.6 cos t, as the external disturbances, are added to the equations of the master and slave sys-
tems, respectively. Also, the following uncertainties are considered in the simulations.
Df1ðxÞ ¼ 0:5 sinðpx1Þ;
Df2ðxÞ ¼ 0:5 sinð2px2Þ;
Df3ðxÞ ¼ 0:5 sinð3px3Þ

8><
>: and

Dg1ðyÞ ¼ �0:5 sinðpy1Þ;
Dg2ðyÞ ¼ �0:5 sinð2py2Þ;
Dg3ðyÞ ¼ �0:5 sinð3py3Þ:

8><
>: ð29Þ
For simplicity, it is assumed that li = 0.001wi and pi = qi, i = 1, 2, 3, and the initial values of l1, l2, and l3 are all set to 10.
Three sliding surfaces are defined as s1 = 2e1, s2 = 2e2, and s3 = 2e3.

4.1. Robust chaos synchronization between the Lorenz and Chen systems

To show the efficiency of the proposed RASMC in synchronizing the Lorenz and Chen systems with unknown uncertain-
ties and external disturbances it is assumed that the Lorenz system drives the Chen system. Therefore, the error dynamics
using Eq. (7) can be obtained as:
_e1 ¼ 35ðe2 � e1Þ þ 25ðx2 � x1Þ þ 0:5 sinðpx1Þ þ 0:5 sinðpy1Þ þ 1:2 cos t � u1ðtÞ;
_e2 ¼ �7e1 þ 28e2 � 35x1 þ 29x2 þ x1x3 � y1y3 þ 0:5 sinð2px2Þ þ 0:5 sinð2py2Þ þ 1:2 cos t � u2ðtÞ;
_e3 ¼ �3e3 � 1=3x3 � x1x2 þ y1y2 þ 0:5 sinð3px3Þ þ 0:5 sinð3py3Þ þ 1:2 cos t � u3ðtÞ:

8><
>: ð30Þ
According to Theorem 1 and Eq. (9), the control inputs are derived as:
u1ðtÞ ¼ 35ðe2 � e1Þ þ 25ðx2 � x1Þ þ ðâ1 þ b̂1 þ l1Þ tan hð2w1e1Þ;
u2ðtÞ ¼ �7e1 þ 28e2 � 35x1 þ 29x2 þ x1x3 � y1y3 þ ðâ2 þ b̂2 þ l2Þ tan hð2w2e2Þ;
u3ðtÞ ¼ �3e3 � 1=3x3 � x1x2 þ y1y2 þ ðâ3 þ b̂3 þ l3Þ tan hð2w3e3Þ:

8><
>: ð31Þ
Vectors [10,10,10] and [2,2,2] are selected as the initial conditions of the Lorenz and Chen systems, respectively. Further-
more, vectors [20,20,20] and [15,15,15] are selected as the initial values of the adaptation vector parameters â and b̂,
respectively.

Fig. 2 shows the synchronization errors of the Lorenz and Chen systems, where the control inputs are applied at t = 5 s. As
one can see, the synchronization errors converge to zero rapidly, which implies the chaos synchronization between the
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Fig. 5. Time response of the adaptation vector parameter b̂.
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Fig. 6. Time response of the adaptation vector parameter l.
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Fig. 7. Time response of the control input ur(t).
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Lorenz and Chen systems is realized (as revealed in Fig. 3). The time responses of the adaptation vector parameters â; b̂ and l
are depicted in Figs. 4–6, respectively. Obviously, all of the adaptation parameters converge to some constants. The contin-
uous adaptive part of the control input ur

i ðtÞ ¼ litanhðwisiÞ; i ¼ 1;2;3 is illustrated in Fig. 7. It is clear that the chattering phe-
nomenon is completely removed.

4.2. Robust chaos synchronization between the Chen and Genesio systems

In this example, the Chen and Genesio chaotic systems are synchronized using the introduced RASMC. It is assumed that
the Chen system is the master system and the Genesio system is the slave system. Therefore, the error dynamics using Eq. (7)
is defined as:
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Fig. 9. State trajectories of the Chen and Genesio systems.

M.P. Aghababa, M.E. Akbari / Applied Mathematics and Computation 218 (2012) 5757–5768 5765



0 5 10 15 20
5

10

15

20

25

30

Time (sec)

α
1,

 α
2,

 α
3

α1

α2
α3

control in action

Fig. 10. Time response of the adaptation vector parameter â.
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Fig. 11. Time response of the adaptation vector parameter b̂.
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Fig. 12. Time response of the adaptation vector parameter l.
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_e1 ¼ 35e2 � 35y1 þ 34z2 þ 0:5 sinðpy1Þ þ 0:5 sinðpz1Þ þ 1:2 cos t � u1ðtÞ;
_e2 ¼ �7y1 þ 28y2 � y1y3 � z3 þ 0:5 sinð2py2Þ þ 0:5 sinð2pz2Þ þ 1:2 cos t � u2ðtÞ;
_e3 ¼ �3e3 þ y1y2 þ 6z1 þ 2:92z2 � 1:8z3 � z2

1 þ 0:5 sinð3py3Þ þ 0:5 sinð3pz3Þ þ 1:2 cos t � u3ðtÞ:

8><
>: ð32Þ
Consequently, according to Theorem 1 and Eq. (9), the control inputs are developed as:
u1ðtÞ ¼ 35e2 � 35y1 þ 34z2 þ ðâ1 þ b̂1 þ l1Þ tan hð2w1e1Þ;
u2ðtÞ ¼ �7y1 þ 28y2 � y1y3 � z3 þ ðâ2 þ b̂2 þ l2Þ tan hð2w2e2Þ;
u3ðtÞ ¼ �3e3 þ y1y2 þ 6z1 þ 2:92z2 � 1:8z3 � z2

1 þ ðâ2 þ b̂2 þ l2Þ tan hð2w3e3Þ:

8><
>: ð33Þ
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Vectors [5,3,4] and [2,�1,2] are selected as the initial conditions of the Chen and Genesio systems, respectively. Moreover,
vectors [30,30,30] and [25,25,25] are chosen as the initial values of the adaptation vector parameters â and b̂, respectively.

The synchronization errors between the Chen and Genesio systems are illustrated in Fig. 8, while the control inputs are
activated at t = 5. It can be seen that the synchronization errors converge to zero quickly, which indicates that the Chen and
Genesio systems are indeed synchronized (as shown in Fig. 9). The time responses of the adaptation vector parameters â; b̂
and l are shown in Figs. 10–12, respectively. It is obvious that all adaptation parameters approach to some fixed values. The
continuous adaptive part of the control input ur(t) is displayed in Fig. 13. One can see that the control ur(t) has no oscillations
and attains zero.

Remark 3. It should be noted that the adaptive parameters âi and b̂i are introduced to tackle the bounds of the error
system’s uncertainties and external disturbances ai and bi, respectively. On the other hand, according to the Lyapunov
function in Eq. (17) and Theorem 1, one can conclude that the Lyapunov function will decrease as time goes to infinity and,
therefore, âi and b̂i will converge to �ai and �bi, respectively. This means that the adaptive parameters âi and b̂i are the
estimators of �ai and �bi, respectively. However, since the parameters âi and b̂i are assumed to get positive values and are
adaptively updated using the adaptation laws in Eq. (10), therefore, they converge to some positive constants (not to �ai and
�bi), as illustrated in simulation results.
5. Conclusions

The problem of chaos synchronization between two different chaotic systems with unknown bounded uncertainties and
external disturbances was investigated and solved using a novel robust adaptive chattering-free sliding mode controller. The
structure of the master and slave systems was without any restrictive assumption. Both master and slave systems were per-
turbed by the unknown uncertainties and external disturbances. Suitable adaptation laws were derived to undertake the
uncertainties and external disturbances. On the basis of Lyapunov stability theory and the adaptation laws, the proposed
controller was designed. Undesirable chattering phenomenon was successfully alleviated using a simple adaptive scheme.
The simulation results showed that the proposed controller works well for synchronizing two different chaotic systems even
with the unknown uncertainties and external disturbances in both master and slave systems.
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